-- Localize globals local assert, math, minetest, modlib, pairs, setmetatable, vector = assert, math, minetest, modlib, pairs, setmetatable, vector --+ Raycast wrapper with proper flowingliquid intersections return function(_pos1, _pos2, objects, liquids) local raycast = minetest.raycast(_pos1, _pos2, objects, liquids) if not liquids then return raycast end local pos1 = modlib.vector.from_minetest(_pos1) local _direction = vector.direction(_pos1, _pos2) local direction = modlib.vector.from_minetest(_direction) local length = vector.distance(_pos1, _pos2) local function next() local pointed_thing = raycast:next() if (not pointed_thing) or pointed_thing.type ~= "node" then return pointed_thing end local _pos = pointed_thing.under local pos = modlib.vector.from_minetest(_pos) local node = minetest.get_node(_pos) local def = minetest.registered_nodes[node.name] if not (def and def.drawtype == "flowingliquid") then return pointed_thing end local corner_levels = modlib.minetest.get_liquid_corner_levels(_pos) local full_corner_levels = true for _, corner_level in pairs(corner_levels) do if corner_level[2] < 0.5 then full_corner_levels = false break end end if full_corner_levels then return pointed_thing end local relative = pos1 - pos local inside = true for _, prop in pairs(relative) do if prop <= -0.5 or prop >= 0.5 then inside = false break end end local function level(x, z) local function distance_squared(corner) return (x - corner[1]) ^ 2 + (z - corner[3]) ^ 2 end local irrelevant_corner, distance = 1, distance_squared(corner_levels[1]) for index = 2, 4 do local other_distance = distance_squared(corner_levels[index]) if other_distance > distance then irrelevant_corner, distance = index, other_distance end end local function corner(off) return corner_levels[((irrelevant_corner + off) % 4) + 1] end local base = corner(2) local edge_1, edge_2 = corner(1) - base, corner(3) - base -- Properly selected edges will have a total length of 2 assert(math.abs(edge_1[1] + edge_1[3]) + math.abs(edge_2[1] + edge_2[3]) == 2) if edge_1[1] == 0 then edge_1, edge_2 = edge_2, edge_1 end local level = base[2] + (edge_1[2] * ((x - base[1]) / edge_1[1])) + (edge_2[2] * ((z - base[3]) / edge_2[3])) assert(level >= -0.5 and level <= 0.5) return level end inside = inside and (relative[2] < level(relative[1], relative[3])) if inside then -- pos1 is inside the liquid node pointed_thing.intersection_point = _pos1 pointed_thing.intersection_normal = vector.new(0, 0, 0) return pointed_thing end local function intersection_normal(axis, dir) return {x = 0, y = 0, z = 0, [axis] = dir} end local function plane(axis, dir) local offset = dir * 0.5 local diff_axis = (relative[axis] - offset) / -direction[axis] local intersection_point = {} for plane_axis = 1, 3 do if plane_axis ~= axis then local value = direction[plane_axis] * diff_axis + relative[plane_axis] if value < -0.5 or value > 0.5 then return end intersection_point[plane_axis] = value end end intersection_point[axis] = offset return intersection_point end if direction[2] > 0 then local intersection_point = plane(2, -1) if intersection_point then pointed_thing.intersection_point = (intersection_point + pos):to_minetest() pointed_thing.intersection_normal = intersection_normal("y", -1) return pointed_thing end end for coord, other in pairs{[1] = 3, [3] = 1} do if direction[coord] ~= 0 then local dir = direction[coord] > 0 and -1 or 1 local intersection_point = plane(coord, dir) if intersection_point then local height = 0 for _, corner in pairs(corner_levels) do if corner[coord] == dir * 0.5 then height = height + (math.abs(intersection_point[other] + corner[other])) * corner[2] end end if intersection_point[2] <= height then pointed_thing.intersection_point = (intersection_point + pos):to_minetest() pointed_thing.intersection_normal = intersection_normal(modlib.vector.index_aliases[coord], dir) return pointed_thing end end end end for _, triangle in pairs{ {corner_levels[3], corner_levels[2], corner_levels[1]}, {corner_levels[4], corner_levels[3], corner_levels[1]} } do local pos_on_ray = modlib.vector.ray_triangle_intersection(relative, direction, triangle) if pos_on_ray and pos_on_ray <= length then pointed_thing.intersection_point = (pos1 + modlib.vector.multiply_scalar(direction, pos_on_ray)):to_minetest() pointed_thing.intersection_normal = modlib.vector.triangle_normal(triangle):to_minetest() return pointed_thing end end return next() end return setmetatable({next = next}, {__call = next}) end