max_wear = math.pow(2, 16) - 1 function override(function_name, function_builder) local func = minetest[function_name] minetest["original_" .. function_name] = func minetest[function_name] = function_builder(func) end -- TODO fix modlib.minetest.get_gametime() messing up responsible "mod" determined by engine on crash get_gametime = minetest.get_gametime local get_gametime_initialized local function get_gametime_init(dtime) if get_gametime_initialized then -- if the profiler is being used, the globalstep can't be unregistered return end get_gametime_initialized = true assert(dtime == 0) local gametime = minetest.get_gametime() assert(gametime) function modlib.minetest.get_gametime() local imprecise_gametime = minetest.get_gametime() if imprecise_gametime > gametime then minetest.log("warning", "modlib.minetest.get_gametime(): Called after increment and before first globalstep") return imprecise_gametime end return gametime end for index, globalstep in pairs(minetest.registered_globalsteps) do if globalstep == get_gametime_init then table.remove(minetest.registered_globalsteps, index) break end end -- globalsteps of mods which depend on modlib will execute after this minetest.register_globalstep(function(dtime) gametime = gametime + dtime end) end minetest.register_globalstep(get_gametime_init) delta_times={} delays={} callbacks={} function register_globalstep(interval, callback) if type(callback) ~= "function" then return end table.insert(delta_times, 0) table.insert(delays, interval) table.insert(callbacks, callback) end function texture_modifier_inventorycube(face_1, face_2, face_3) return "[inventorycube{" .. string.gsub(face_1, "%^", "&") .. "{" .. string.gsub(face_2, "%^", "&") .. "{" .. string.gsub(face_3, "%^", "&") end function get_node_inventory_image(nodename) local n = minetest.registered_nodes[nodename] if not n then return end local tiles = {} for l, tile in pairs(n.tiles or {}) do tiles[l] = (type(tile) == "string" and tile) or tile.name end local chosen_tiles = { tiles[1], tiles[3], tiles[5] } if #chosen_tiles == 0 then return false end if not chosen_tiles[2] then chosen_tiles[2] = chosen_tiles[1] end if not chosen_tiles[3] then chosen_tiles[3] = chosen_tiles[2] end local img = minetest.registered_items[nodename].inventory_image if string.len(img) == 0 then img = nil end return img or texture_modifier_inventorycube(chosen_tiles[1], chosen_tiles[2], chosen_tiles[3]) end function get_color_int(color) return color.b + (color.g*256) + (color.r*256*256) end function check_player_privs(playername, privtable) local privs=minetest.get_player_privs(playername) local missing_privs={} local to_lose_privs={} for priv, expected_value in pairs(privtable) do local actual_value=privs[priv] if expected_value then if not actual_value then table.insert(missing_privs, priv) end else if actual_value then table.insert(to_lose_privs, priv) end end end return missing_privs, to_lose_privs end function box_box_collision(a, b) for i=1, 3 do if a[i] < (b[i] + b[i+3]) or b[i] < (a[i] + a[i+3]) then return false end end return true end minetest.register_globalstep(function(dtime) for k, v in pairs(delta_times) do local v=dtime+v if v > delays[k] then callbacks[k](v) v=0 end delta_times[k]=v end end) form_listeners = {} function register_form_listener(formname, func) local current_listeners = form_listeners[formname] or {} table.insert(current_listeners, func) form_listeners[formname] = current_listeners end minetest.register_on_player_receive_fields(function(player, formname, fields) local handlers = form_listeners[formname] if handlers then for _, handler in pairs(handlers) do handler(player, fields) end end end) liquid_level_max = 8 --+ Calculates the flow direction of a flowingliquid node --# as returned by `minetest.get_node` --> 4 corner levels from -0.5 to 0.5 as list function get_liquid_corner_levels(pos) local node = minetest.get_node(pos) local def = minetest.registered_nodes[node.name] local source, flowing = def.liquid_alternative_source, node.name local range = def.liquid_range or liquid_level_max local neighbors = {} for x = -1, 1 do neighbors[x] = {} for z = -1, 1 do local neighbor_pos = {x = pos.x + x, y = pos.y, z = pos.z + z} local neighbor_node = minetest.get_node(neighbor_pos) local level if neighbor_node.name == source then level = 1 elseif neighbor_node.name == flowing then local neighbor_level = neighbor_node.param2 % 8 level = (math.max(0, neighbor_level - liquid_level_max + range) + 0.5) / range end neighbor_pos.y = neighbor_pos.y + 1 local node_above = minetest.get_node(neighbor_pos) neighbors[x][z] = { air = neighbor_node.name == "air", level = level, above_is_same_liquid = node_above.name == flowing or node_above.name == source } end end local function get_corner_level(x, z) local air_neighbor local levels = 0 local neighbor_count = 0 for nx = x - 1, x do for nz = z - 1, z do local neighbor = neighbors[nx][nz] if neighbor.above_is_same_liquid then return 1 end local level = neighbor.level if level then if level == 1 then return 1 end levels = levels + level neighbor_count = neighbor_count + 1 elseif neighbor.air then if air_neighbor then return 0.02 end air_neighbor = true end end end if neighbor_count == 0 then return 0 end return levels / neighbor_count end local corner_levels = { {x = 0, z = 0}, {x = 1, z = 0}, {x = 1, z = 1}, {x = 0, z = 1} } for _, corner_level in pairs(corner_levels) do corner_level.y = get_corner_level(corner_level.x, corner_level.z) - 0.5 corner_level.x, corner_level.z = corner_level.x - 0.5, corner_level.z - 0.5 end return corner_levels end flowing_downwards = vector.new(0, -1, 0) --+ Calculates the flow direction of a flowingliquid node --# as returned by `minetest.get_node` --> `modlib.minetest.flowing_downwards = vector.new(0, -1, 0)` if only flowing downwards --> surface direction as `vector` else function get_liquid_flow_direction(pos) local corner_levels = get_liquid_corner_levels(pos) local max_level = corner_levels[1].y for index = 2, 4 do local level = corner_levels[index].y if level > max_level then max_level = level end end local dir = vector.new(0, 0, 0) local count = 0 for max_level_index, corner_level in pairs(corner_levels) do if corner_level.y == max_level then for offset = 1, 3 do local index = (max_level_index + offset - 1) % 4 + 1 local diff = vector.subtract(corner_level, corner_levels[index]) if diff.y ~= 0 then diff.x = diff.x * diff.y diff.z = diff.z * diff.y if offset == 3 then diff = vector.divide(diff, math.sqrt(2)) end dir = vector.add(dir, diff) count = count + 1 end end end end if count ~= 0 then dir = vector.divide(dir, count) end if vector.equals(dir, vector.new(0, 0, 0)) then if node.param2 % 32 > 7 then return flowing_downwards end end return dir end --+ Möller-Trumbore function ray_triangle_intersection(origin, direction, triangle) local point_1, point_2, point_3 = unpack(triangle) local edge_1, edge_2 = vector.subtract(point_2, point_1), vector.subtract(point_3, point_1) local h = vector.cross(direction, edge_2) local a = vector.dot(edge_1, h) if math.abs(a) < 1e-9 then return end local f = 1 / a local diff = vector.subtract(origin, point_1) local u = f * vector.dot(diff, h) if u < 0 or u > 1 then return end local q = vector.cross(diff, edge_1) local v = f * vector.dot(direction, q) if v < 0 or u + v > 1 then return end local pos_on_line = f * vector.dot(edge_2, q); if pos_on_line >= 0 then return pos_on_line end end function triangle_normal(triangle) local point_1, point_2, point_3 = unpack(triangle) local edge_1, edge_2 = vector.subtract(point_2, point_1), vector.subtract(point_3, point_1) return vector.normalize{ x = edge_1.y * edge_2.z - edge_1.z * edge_2.y, y = edge_1.z * edge_2.x - edge_1.x * edge_2.z, z = edge_1.x * edge_2.y - edge_1.y * edge_2.x } end --+ Raycast wrapper with proper flowingliquid intersections function raycast(pos1, pos2, objects, liquids) local raycast = minetest.raycast(pos1, pos2, objects, liquids) if not liquids then return raycast end local direction = vector.direction(pos1, pos2) local length = vector.distance(pos1, pos2) local function next() for pointed_thing in raycast do if pointed_thing.type ~= "node" then return pointed_thing end local pos = pointed_thing.under local node = minetest.get_node(pos) local def = minetest.registered_nodes[node.name] if not (def and def.drawtype == "flowingliquid") then return pointed_thing end local corner_levels = get_liquid_corner_levels(pos) local full_corner_levels = true for _, corner_level in pairs(corner_levels) do if corner_level.y < 0.5 then full_corner_levels = false break end end if full_corner_levels then return pointed_thing end -- origin = pos local relative = vector.subtract(pos1, pos) local inside = true for _, prop in pairs(relative) do if prop <= -0.5 or prop >= 0.5 then inside = false break end end local function level(x, z) local function distance_squared(corner) return (x - corner.x) ^ 2 + (z - corner.z) ^ 2 end local irrelevant_corner, distance = 1, distance_squared(corner_levels[1]) for index = 2, 4 do local other_distance = distance_squared(corner_levels[index]) if other_distance > distance then irrelevant_corner, distance = index, other_distance end end local function corner(off) return corner_levels[((irrelevant_corner + off) % 4) + 1] end local base = corner(2) local edge_1, edge_2 = vector.subtract(corner(1), base), vector.subtract(corner(3), base) assert(math.abs(edge_1.x + edge_1.z) + math.abs(edge_2.x + edge_2.z) == 2) if edge_1.x == 0 then edge_1, edge_2 = edge_2, edge_1 end local level = base.y + (edge_1.y * ((x - base.x) / edge_1.x)) + (edge_2.y * ((z - base.z) / edge_2.z)) assert(level >= -0.5 and level <= 0.5) return level end inside = inside and (relative.y < level(relative.x, relative.z)) if inside then -- pos1 is inside the liquid node pointed_thing.intersection_point = pos1 pointed_thing.intersection_normal = vector.new(0, 0, 0) return pointed_thing end local function intersection_normal(axis, dir) return {x = 0, y = 0, z = 0, [axis] = dir} end local function plane(axis, dir) local offset = dir * 0.5 local diff_axis = (relative[axis] - offset) / -direction[axis] local intersection_point = {} for plane_axis in pairs{x = true, y = true, z = true, [axis] = nil} do local value = direction[plane_axis] * diff_axis + relative[plane_axis] if value < -0.5 or value > 0.5 then return end intersection_point[plane_axis] = value end intersection_point[axis] = offset return intersection_point end if direction.y > 0 then local intersection_point = plane("y", -1) if intersection_point then pointed_thing.intersection_point = vector.add(intersection_point, pos) pointed_thing.intersection_normal = intersection_normal("y", -1) return pointed_thing end end for coord, other in pairs{x = "z", z = "x"} do if direction[coord] ~= 0 then local dir = direction[coord] > 0 and -1 or 1 local intersection_point = plane(coord, dir) if intersection_point then local height = 0 for _, corner in pairs(corner_levels) do if corner[coord] == dir * 0.5 then height = height + (math.abs(intersection_point[other] + corner[other])) * corner.y end end if intersection_point.y <= height then pointed_thing.intersection_point = vector.add(intersection_point, pos) pointed_thing.intersection_normal = intersection_normal(coord, dir) return pointed_thing end end end end for _, triangle in pairs{ {corner_levels[1], corner_levels[2], corner_levels[3]}, {corner_levels[1], corner_levels[3], corner_levels[4]} } do local pos_on_ray = ray_triangle_intersection(relative, direction, triangle) if pos_on_ray and pos_on_ray <= length then pointed_thing.intersection_point = vector.add(pos1, vector.multiply(direction, pos_on_ray)) pointed_thing.intersection_normal = vector.multiply(triangle_normal(triangle), -1) return pointed_thing end end end end return setmetatable({next = next}, {__call = next}) end