mirror of
https://github.com/appgurueu/modlib.git
synced 2024-11-25 08:43:44 +01:00
274 lines
6.1 KiB
Lua
274 lines
6.1 KiB
Lua
-- Localize globals
|
|
local assert, math, pairs, rawget, rawset, setmetatable, unpack, vector = assert, math, pairs, rawget, rawset, setmetatable, unpack, vector
|
|
|
|
-- Set environment
|
|
local _ENV = {}
|
|
setfenv(1, _ENV)
|
|
|
|
local mt_vector = vector
|
|
|
|
index_aliases = {
|
|
x = 1,
|
|
y = 2,
|
|
z = 3,
|
|
w = 4;
|
|
"x", "y", "z", "w";
|
|
}
|
|
|
|
metatable = {
|
|
__index = function(table, key)
|
|
local index = index_aliases[key]
|
|
if index ~= nil then
|
|
return rawget(table, index)
|
|
end
|
|
return _ENV[key]
|
|
end,
|
|
__newindex = function(table, key, value)
|
|
-- TODO
|
|
local index = index_aliases[key]
|
|
if index ~= nil then
|
|
return rawset(table, index, value)
|
|
end
|
|
return rawset(table, key, value)
|
|
end
|
|
}
|
|
|
|
function new(v)
|
|
return setmetatable(v, metatable)
|
|
end
|
|
|
|
function zeros(n)
|
|
local v = {}
|
|
for i = 1, n do
|
|
v[i] = 0
|
|
end
|
|
return new(v)
|
|
end
|
|
function from_xyzw(v)
|
|
return new{v.x, v.y, v.z, v.w}
|
|
end
|
|
|
|
function from_minetest(v)
|
|
return new{v.x, v.y, v.z}
|
|
end
|
|
|
|
function to_xyzw(v)
|
|
return {x = v[1], y = v[2], z = v[3], w = v[4]}
|
|
end
|
|
|
|
--+ not necessarily required, as Minetest respects the metatable
|
|
function to_minetest(v)
|
|
return mt_vector.new(unpack(v))
|
|
end
|
|
|
|
function equals(v, w)
|
|
for k, v in pairs(v) do
|
|
if v ~= w[k] then return false end
|
|
end
|
|
return true
|
|
end
|
|
|
|
metatable.__eq = equals
|
|
|
|
function combine(v, w, f)
|
|
local new_vector = {}
|
|
for key, value in pairs(v) do
|
|
new_vector[key] = f(value, w[key])
|
|
end
|
|
return new(new_vector)
|
|
end
|
|
|
|
function apply(v, f, ...)
|
|
local new_vector = {}
|
|
for key, value in pairs(v) do
|
|
new_vector[key] = f(value, ...)
|
|
end
|
|
return new(new_vector)
|
|
end
|
|
|
|
function combinator(f)
|
|
return function(v, w)
|
|
return combine(v, w, f)
|
|
end, function(v, ...)
|
|
return apply(v, f, ...)
|
|
end
|
|
end
|
|
|
|
function invert(v)
|
|
local res = {}
|
|
for key, value in pairs(v) do
|
|
res[key] = -value
|
|
end
|
|
return new(res)
|
|
end
|
|
|
|
add, add_scalar = combinator(function(v, w) return v + w end)
|
|
subtract, subtract_scalar = combinator(function(v, w) return v - w end)
|
|
multiply, multiply_scalar = combinator(function(v, w) return v * w end)
|
|
divide, divide_scalar = combinator(function(v, w) return v / w end)
|
|
pow, pow_scalar = combinator(function(v, w) return v ^ w end)
|
|
|
|
metatable.__add = add
|
|
metatable.__unm = invert
|
|
metatable.__sub = subtract
|
|
metatable.__mul = multiply
|
|
metatable.__div = divide
|
|
|
|
--+ linear interpolation
|
|
--: ratio number from 0 (all the first vector) to 1 (all the second vector)
|
|
function interpolate(v, w, ratio)
|
|
return add(multiply_scalar(v, 1 - ratio), multiply_scalar(w, ratio))
|
|
end
|
|
|
|
function norm(v)
|
|
local sum = 0
|
|
for _, value in pairs(v) do
|
|
sum = sum + value ^ 2
|
|
end
|
|
return sum
|
|
end
|
|
|
|
function length(v)
|
|
return math.sqrt(norm(v))
|
|
end
|
|
|
|
-- Minor code duplication for the sake of performance
|
|
function distance(v, w)
|
|
local sum = 0
|
|
for key, value in pairs(v) do
|
|
sum = sum + (value - w[key]) ^ 2
|
|
end
|
|
return math.sqrt(sum)
|
|
end
|
|
|
|
function normalize(v)
|
|
return divide_scalar(v, length(v))
|
|
end
|
|
|
|
function normalize_zero(v)
|
|
local len = length(v)
|
|
if len == 0 then
|
|
-- Return a zeroed vector with the same keys
|
|
local zeroed = {}
|
|
for k in pairs(v) do
|
|
zeroed[k] = 0
|
|
end
|
|
return new(zeroed)
|
|
end
|
|
return divide_scalar(v, len)
|
|
end
|
|
|
|
function floor(v)
|
|
return apply(v, math.floor)
|
|
end
|
|
|
|
function ceil(v)
|
|
return apply(v, math.ceil)
|
|
end
|
|
|
|
function clamp(v, min, max)
|
|
return apply(apply(v, math.max, min), math.min, max)
|
|
end
|
|
|
|
function cross3(v, w)
|
|
assert(#v == 3 and #w == 3)
|
|
return new{
|
|
v[2] * w[3] - v[3] * w[2],
|
|
v[3] * w[1] - v[1] * w[3],
|
|
v[1] * w[2] - v[2] * w[1]
|
|
}
|
|
end
|
|
|
|
function dot(v, w)
|
|
local sum = 0
|
|
for i, c in pairs(v) do
|
|
sum = sum + c * w[i]
|
|
end
|
|
return sum
|
|
end
|
|
|
|
function reflect(v, normal --[[**normalized** plane normal vector]])
|
|
return subtract(v, multiply_scalar(normal, 2 * dot(v, normal))) -- reflection of v at the plane
|
|
end
|
|
|
|
--+ Angle between two vectors
|
|
--> Signed angle in radians
|
|
function angle(v, w)
|
|
-- Based on dot(v, w) = |v| * |w| * cos(x)
|
|
return math.acos(dot(v, w) / length(v) / length(w))
|
|
end
|
|
|
|
-- See https://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToAngle/
|
|
function axis_angle3(euler_rotation)
|
|
assert(#euler_rotation == 3)
|
|
euler_rotation = divide_scalar(euler_rotation, 2)
|
|
local cos = apply(euler_rotation, math.cos)
|
|
local sin = apply(euler_rotation, math.sin)
|
|
return normalize_zero{
|
|
sin[1] * sin[2] * cos[3] + cos[1] * cos[2] * sin[3],
|
|
sin[1] * cos[2] * cos[3] + cos[1] * sin[2] * sin[3],
|
|
cos[1] * sin[2] * cos[3] - sin[1] * cos[2] * sin[3],
|
|
}, 2 * math.acos(cos[1] * cos[2] * cos[3] - sin[1] * sin[2] * sin[3])
|
|
end
|
|
|
|
-- Uses Rodrigues' rotation formula
|
|
-- axis must be normalized
|
|
function rotate3(v, axis, angle)
|
|
assert(#v == 3 and #axis == 3)
|
|
local cos = math.cos(angle)
|
|
return multiply_scalar(v, cos)
|
|
-- Minetest's coordinate system is *left-handed*, so `v` and `axis` must be swapped here
|
|
+ multiply_scalar(cross3(v, axis), math.sin(angle))
|
|
+ multiply_scalar(axis, dot(axis, v) * (1 - cos))
|
|
end
|
|
|
|
function box_box_collision(diff, box, other_box)
|
|
for index, diff in pairs(diff) do
|
|
if box[index] + diff > other_box[index + 3] or other_box[index] > box[index + 3] + diff then
|
|
return false
|
|
end
|
|
end
|
|
return true
|
|
end
|
|
|
|
local function moeller_trumbore(origin, direction, triangle, is_tri)
|
|
local point_1, point_2, point_3 = unpack(triangle)
|
|
local edge_1, edge_2 = subtract(point_2, point_1), subtract(point_3, point_1)
|
|
local h = cross3(direction, edge_2)
|
|
local a = dot(edge_1, h)
|
|
if math.abs(a) < 1e-9 then
|
|
return
|
|
end
|
|
local f = 1 / a
|
|
local diff = subtract(origin, point_1)
|
|
local u = f * dot(diff, h)
|
|
if u < 0 or u > 1 then
|
|
return
|
|
end
|
|
local q = cross3(diff, edge_1)
|
|
local v = f * dot(direction, q)
|
|
if v < 0 or (is_tri and u or 0) + v > 1 then
|
|
return
|
|
end
|
|
local pos_on_line = f * dot(edge_2, q)
|
|
if pos_on_line >= 0 then
|
|
return pos_on_line, u, v
|
|
end
|
|
end
|
|
|
|
function ray_triangle_intersection(origin, direction, triangle)
|
|
return moeller_trumbore(origin, direction, triangle, true)
|
|
end
|
|
|
|
function ray_parallelogram_intersection(origin, direction, parallelogram)
|
|
return moeller_trumbore(origin, direction, parallelogram)
|
|
end
|
|
|
|
function triangle_normal(triangle)
|
|
local point_1, point_2, point_3 = unpack(triangle)
|
|
local edge_1, edge_2 = subtract(point_2, point_1), subtract(point_3, point_1)
|
|
return normalize(cross3(edge_1, edge_2))
|
|
end
|
|
|
|
-- Export environment
|
|
return _ENV |