Merge pull request #3371 from Hedrauta/Hamming-Coding-Contracts

2 new Coding Contracts
This commit is contained in:
hydroflame 2022-04-08 00:35:19 -04:00 committed by GitHub
commit 1b7abbffaf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 156 additions and 0 deletions

@ -1,5 +1,6 @@
import { getRandomInt } from "../utils/helpers/getRandomInt"; import { getRandomInt } from "../utils/helpers/getRandomInt";
import { HammingEncode, HammingDecode } from "../utils/HammingCodeTools";
/* tslint:disable:completed-docs no-magic-numbers arrow-return-shorthand */ /* tslint:disable:completed-docs no-magic-numbers arrow-return-shorthand */
/* Function that generates a valid 'data' for a contract type */ /* Function that generates a valid 'data' for a contract type */
@ -1008,4 +1009,62 @@ export const codingContractTypesMetadata: ICodingContractTypeMetadata[] = [
return true; return true;
}, },
}, },
{
name: "HammingCodes: Integer to encoded Binary",
numTries: 10,
difficulty: 5,
desc: (n: number): string => {
return [
"You are given the following decimal Value: \n",
`${n} \n`,
"Convert it into a binary string and encode it as a 'Hamming-Code'. eg:\n ",
"Value 8 will result into binary '1000', which will be encoded",
"with the pattern 'pppdpddd', where p is a paritybit and d a databit,\n",
"or '10101' (Value 21) will result into (pppdpdddpd) '1111101011'.\n\n",
"NOTE: You need an parity Bit on Index 0 as an 'overall'-paritybit. \n",
"NOTE 2: You should watch the HammingCode-video from 3Blue1Brown, which explains the 'rule' of encoding,",
"including the first Index parity-bit mentioned on the first note.\n\n",
"Now the only one rule for this encoding:\n",
" It's not allowed to add additional leading '0's to the binary value\n",
"That means, the binary value has to be encoded as it is",
].join(" ");
},
gen: (): number => {
return getRandomInt(Math.pow(2, 4), Math.pow(2, getRandomInt(1, 57)));
},
solver: (data: number, ans: string): boolean => {
return ans === HammingEncode(data);
},
},
{
name: "HammingCodes: Encoded Binary to Integer",
difficulty: 8,
numTries: 10,
desc: (n: string): string => {
return [
"You are given the following encoded binary String: \n",
`'${n}' \n`,
"Treat it as a Hammingcode with 1 'possible' error on an random Index.\n",
"Find the 'possible' wrong bit, fix it and extract the decimal value, which is hidden inside the string.\n\n",
"Note: The length of the binary string is dynamic, but it's encoding/decoding is following Hammings 'rule'\n",
"Note 2: Index 0 is an 'overall' parity bit. Watch the Hammingcode-video from 3Blue1Brown for more information\n",
"Note 3: There's a ~55% chance for an altered Bit. So... MAYBE there is an altered Bit 😉\n",
"Extranote for automation: return the decimal value as a string",
].join(" ");
},
gen: (): string => {
const _alteredBit = Math.round(Math.random());
const _buildArray: Array<string> = HammingEncode(
getRandomInt(Math.pow(2, 4), Math.pow(2, getRandomInt(1, 57))),
).split("");
if (_alteredBit) {
const _randomIndex: number = getRandomInt(0, _buildArray.length - 1);
_buildArray[_randomIndex] = _buildArray[_randomIndex] == "0" ? "1" : "0";
}
return _buildArray.join("");
},
solver: (data: string, ans: string): boolean => {
return parseInt(ans, 10) === HammingDecode(data);
},
},
]; ];

@ -0,0 +1,97 @@
// by Discord: H3draut3r#6722, feel free to ask me any questions. i probably don't know the answer 🤣
export function HammingEncode(value: number): string {
// encoding following Hammings rule
function HammingSumOfParity(_lengthOfDBits: number): number {
// will calculate the needed amount of parityBits 'without' the "overall"-Parity (that math took me 4 Days to get it working)
return _lengthOfDBits < 3 || _lengthOfDBits == 0 // oh and of course using ternary operators, it's a pretty neat function
? _lengthOfDBits == 0
? 0
: _lengthOfDBits + 1
: // the following math will only work, if the length is greater equal 3, otherwise it's "kind of" broken :D
Math.ceil(Math.log2(_lengthOfDBits * 2)) <=
Math.ceil(Math.log2(1 + _lengthOfDBits + Math.ceil(Math.log2(_lengthOfDBits))))
? Math.ceil(Math.log2(_lengthOfDBits) + 1)
: Math.ceil(Math.log2(_lengthOfDBits));
}
const _data = value.toString(2).split(""); // first, change into binary string, then create array with 1 bit per index
const _sumParity: number = HammingSumOfParity(_data.length); // get the sum of needed parity bits (for later use in encoding)
const count = (arr: Array<string>, val: string): number =>
arr.reduce((a: number, v: string) => (v === val ? a + 1 : a), 0);
// function count for specific entries in the array, for later use
const _build = ["x", "x", ..._data.splice(0, 1)]; // init the "pre-build"
for (let i = 2; i < _sumParity; i++) {
// add new paritybits and the corresponding data bits (pre-building array)
_build.push("x", ..._data.splice(0, Math.pow(2, i) - 1));
}
// now the "calculation"... get the paritybits ('x') working
for (const index of _build.reduce(function (a: Array<number>, e: string, i: number) {
if (e == "x") a.push(i);
return a;
}, [])) {
// that reduce will result in an array of index numbers where the "x" is placed
const _tempcount = index + 1; // set the "stepsize" for the parityBit
const _temparray = []; // temporary array to store the extracted bits
const _tempdata = [..._build]; // only work with a copy of the _build
while (_tempdata[index] !== undefined) {
// as long as there are bits on the starting index, do "cut"
const _temp: Array<string> = _tempdata.splice(index, _tempcount * 2); // cut stepsize*2 bits, then...
_temparray.push(..._temp.splice(0, _tempcount)); // ... cut the result again and keep the first half
}
_temparray.splice(0, 1); // remove first bit, which is the parity one
_build[index] = (count(_temparray, "1") % 2).toString(); // count with remainder of 2 and"toString" to store the parityBit
} // parity done, now the "overall"-parity is set
_build.unshift((count(_build, "1") % 2).toString()); // has to be done as last element
return _build.join(""); // return the _build as string
}
export function HammingDecode(_data: string): number {
//check for altered bit and decode
const _build = _data.split(""); // ye, an array for working, again
const _testArray = []; //for the "truthtable". if any is false, the data has an altered bit, will check for and fix it
const _sumParity = Math.ceil(Math.log2(_data.length)); // sum of parity for later use
const count = (arr: Array<string>, val: string): number =>
arr.reduce((a: number, v: string) => (v === val ? a + 1 : a), 0);
// the count.... again ;)
let _overallParity = _build.splice(0, 1).join(""); // store first index, for checking in next step and fix the _build properly later on
_testArray.push(_overallParity == (count(_build, "1") % 2).toString() ? true : false); // first check with the overall parity bit
for (let i = 0; i < _sumParity; i++) {
// for the rest of the remaining parity bits we also "check"
const _tempIndex = Math.pow(2, i) - 1; // get the parityBits Index
const _tempStep = _tempIndex + 1; // set the stepsize
const _tempData = [..._build]; // get a "copy" of the build-data for working
const _tempArray = []; // init empty array for "testing"
while (_tempData[_tempIndex] != undefined) {
// extract from the copied data until the "starting" index is undefined
const _temp = [..._tempData.splice(_tempIndex, _tempStep * 2)]; // extract 2*stepsize
_tempArray.push(..._temp.splice(0, _tempStep)); // and cut again for keeping first half
}
const _tempParity = _tempArray.shift(); // and again save the first index separated for checking with the rest of the data
_testArray.push(_tempParity == (count(_tempArray, "1") % 2).toString() ? true : false);
// is the _tempParity the calculated data? push answer into the 'truthtable'
}
let _fixIndex = 0; // init the "fixing" index and start with 0
for (let i = 1; i < _sumParity + 1; i++) {
// simple binary adding for every boolean in the _testArray, starting from 2nd index of it
_fixIndex += _testArray[i] ? 0 : Math.pow(2, i) / 2;
}
_build.unshift(_overallParity); // now we need the "overall" parity back in it's place
// try fix the actual encoded binary string if there is an error
if (_fixIndex > 0 && _testArray[0] == false) {
// if the overall is false and the sum of calculated values is greater equal 0, fix the corresponding hamming-bit
_build[_fixIndex] = _build[_fixIndex] == "0" ? "1" : "0";
} else if (_testArray[0] == false) {
// otherwise, if the the overall_parity is the only wrong, fix that one
_overallParity = _overallParity == "0" ? "1" : "0";
} else if (_testArray[0] == true && _testArray.some((truth) => truth == false)) {
return 0; // uhm, there's some strange going on... 2 bits are altered? How? This should not happen 👀
}
// oof.. halfway through... we fixed an possible altered bit, now "extract" the parity-bits from the _build
for (let i = _sumParity; i >= 0; i--) {
// start from the last parity down the 2nd index one
_build.splice(Math.pow(2, i), 1);
}
_build.splice(0, 1); // remove the overall parity bit and we have our binary value
return parseInt(_build.join(""), 2); // parse the integer with redux 2 and we're done!
}