merge dev

This commit is contained in:
phyzical 2022-04-26 20:58:39 +08:00
commit a7a725de22
30 changed files with 847 additions and 289 deletions

4
dist/main.bundle.js vendored

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

66
dist/vendor.bundle.js vendored

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

@ -84,176 +84,289 @@ The following is a list of all of the problem types that a Coding Contract can c
The list contains the name of (i.e. the value returned by
:js:func:`getContractType`) and a brief summary of the problem it poses.
+------------------------------------+------------------------------------------------------------------------------------------+
| Name | Problem Summary |
+====================================+==========================================================================================+
| Find Largest Prime Factor | | Given a number, find its largest prime factor. A prime factor |
| | | is a factor that is a prime number. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Subarray with Maximum Sum | | Given an array of integers, find the contiguous subarray (containing |
| | | at least one number) which has the largest sum and return that sum. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Total Ways to Sum | | Given a number, how many different distinct ways can that number be written as |
| | | a sum of at least two positive integers? |
+------------------------------------+------------------------------------------------------------------------------------------+
| Total Ways to Sum II | | You are given an array with two elements. The first element is an integer n. |
| | | The second element is an array of numbers representing the set of available integers. |
| | | How many different distinct ways can that number n be written as |
| | | a sum of integers contained in the given set? |
| | | You may use each integer in the set zero or more times. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Spiralize Matrix | | Given an array of array of numbers representing a 2D matrix, return the |
| | | elements of that matrix in clockwise spiral order. |
| | | |
| | | Example: The spiral order of |
| | | |
| | | [1, 2, 3, 4] |
| | | [5, 6, 7, 8] |
| | | [9, 10, 11, 12] |
| | | |
| | | is [1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7] |
+------------------------------------+------------------------------------------------------------------------------------------+
| Array Jumping Game | | You are given an array of integers where each element represents the |
| | | maximum possible jump distance from that position. For example, if you |
| | | are at position i and your maximum jump length is n, then you can jump |
| | | to any position from i to i+n. |
| | | |
| | | Assuming you are initially positioned at the start of the array, determine |
| | | whether you are able to reach the last index of the array. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Array Jumping Game II | | You are given an array of integers where each element represents the |
| | | maximum possible jump distance from that position. For example, if you |
| | | are at position i and your maximum jump length is n, then you can jump |
| | | to any position from i to i+n. |
| | | |
| | | Assuming you are initially positioned at the start of the array, determine |
| | | the minimum number of jumps to reach the end of the array. |
| | | |
| | | If it's impossible to reach the end, then the answer should be 0. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Merge Overlapping Intervals | | Given an array of intervals, merge all overlapping intervals. An interval |
| | | is an array with two numbers, where the first number is always less than |
| | | the second (e.g. [1, 5]). |
| | | |
| | | The intervals must be returned in ASCENDING order. |
| | | |
| | | Example: |
| | | [[1, 3], [8, 10], [2, 6], [10, 16]] |
| | | merges into [[1, 6], [8, 16]] |
+------------------------------------+------------------------------------------------------------------------------------------+
| Generate IP Addresses | | Given a string containing only digits, return an array with all possible |
| | | valid IP address combinations that can be created from the string. |
| | | |
| | | An octet in the IP address cannot begin with '0' unless the number itself |
| | | is actually 0. For example, "192.168.010.1" is NOT a valid IP. |
| | | |
| | | Examples: |
| | | 25525511135 -> [255.255.11.135, 255.255.111.35] |
| | | 1938718066 -> [193.87.180.66] |
+------------------------------------+------------------------------------------------------------------------------------------+
| Algorithmic Stock Trader I | | You are given an array of numbers representing stock prices, where the |
| | | i-th element represents the stock price on day i. |
| | | |
| | | Determine the maximum possible profit you can earn using at most one |
| | | transaction (i.e. you can buy an sell the stock once). If no profit |
| | | can be made, then the answer should be 0. Note that you must buy the stock |
| | | before you can sell it. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Algorithmic Stock Trader II | | You are given an array of numbers representing stock prices, where the |
| | | i-th element represents the stock price on day i. |
| | | |
| | | Determine the maximum possible profit you can earn using as many transactions |
| | | as you'd like. A transaction is defined as buying and then selling one |
| | | share of the stock. Note that you cannot engage in multiple transactions at |
| | | once. In other words, you must sell the stock before you buy it again. If no |
| | | profit can be made, then the answer should be 0. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Algorithmic Stock Trader III | | You are given an array of numbers representing stock prices, where the |
| | | i-th element represents the stock price on day i. |
| | | |
| | | Determine the maximum possible profit you can earn using at most two |
| | | transactions. A transaction is defined as buying and then selling one share |
| | | of the stock. Note that you cannot engage in multiple transactions at once. |
| | | In other words, you must sell the stock before you buy it again. If no profit |
| | | can be made, then the answer should be 0. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Algorithmic Stock Trader IV | | You are given an array with two elements. The first element is an integer k. |
| | | The second element is an array of numbers representing stock prices, where the |
| | | i-th element represents the stock price on day i. |
| | | |
| | | Determine the maximum possible profit you can earn using at most k transactions. |
| | | A transaction is defined as buying and then selling one share of the stock. |
| | | Note that you cannot engage in multiple transactions at once. In other words, |
| | | you must sell the stock before you can buy it. If no profit can be made, then |
| | | the answer should be 0. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Minimum Path Sum in a Triangle | | You are given a 2D array of numbers (array of array of numbers) that represents a |
| | | triangle (the first array has one element, and each array has one more element than |
| | | the one before it, forming a triangle). Find the minimum path sum from the top to the |
| | | bottom of the triangle. In each step of the path, you may only move to adjacent |
| | | numbers in the row below. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Unique Paths in a Grid I | | You are given an array with two numbers: [m, n]. These numbers represent a |
| | | m x n grid. Assume you are initially positioned in the top-left corner of that |
| | | grid and that you are trying to reach the bottom-right corner. On each step, |
| | | you may only move down or to the right. |
| | | |
| | |
| | | Determine how many unique paths there are from start to finish. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Unique Paths in a Grid II | | You are given a 2D array of numbers (array of array of numbers) representing |
| | | a grid. The 2D array contains 1's and 0's, where 1 represents an obstacle and |
| | |
| | | 0 represents a free space. |
| | | |
| | | Assume you are initially positioned in top-left corner of that grid and that you |
| | | are trying to reach the bottom-right corner. In each step, you may only move down |
| | | or to the right. Furthermore, you cannot move onto spaces which have obstacles. |
| | | |
| | | Determine how many unique paths there are from start to finish. |
+------------------------------------+------------------------------------------------------------------------------------------+
| Shortest Path in a Grid | | You are given a 2D array of numbers (array of array of numbers) representing |
| | | a grid. The 2D array contains 1's and 0's, where 1 represents an obstacle and |
| | | 0 represents a free space. |
| | | |
| | | Assume you are initially positioned in top-left corner of that grid and that you |
| | | are trying to reach the bottom-right corner. In each step, you may move to the up, |
| | | down, left or right. Furthermore, you cannot move onto spaces which have obstacles. |
| | | |
| | | Determine if paths exist from start to destination, and find the shortest one. |
| | | |
| | | Examples: |
| | | [[0,1,0,0,0], |
| | | [0,0,0,1,0]] -> "DRRURRD" |
| | | [[0,1], |
| | | [1,0]] -> "" |
| | | |
+------------------------------------+------------------------------------------------------------------------------------------+
| Sanitize Parentheses in Expression | | Given a string with parentheses and letters, remove the minimum number of invalid |
| | | parentheses in order to validate the string. If there are multiple minimal ways |
| | | to validate the string, provide all of the possible results. |
| | | |
| | | The answer should be provided as an array of strings. If it is impossible to validate |
| | | the string, the result should be an array with only an empty string. |
| | | |
| | | Examples: |
| | | ()())() -> [()()(), (())()] |
| | | (a)())() -> [(a)()(), (a())()] |
| | | )( -> [""] |
+------------------------------------+------------------------------------------------------------------------------------------+
| Find All Valid Math Expressions | | You are given a string which contains only digits between 0 and 9 as well as a target |
| | | number. Return all possible ways you can add the +, -, and * operators to the string |
| | | of digits such that it evaluates to the target number. |
| | | |
| | | The answer should be provided as an array of strings containing the valid expressions. |
| | | |
| | | NOTE: Numbers in an expression cannot have leading 0's |
| | | NOTE: The order of evaluation expects script operator precedence |
| | | |
| | | Examples: |
| | | Input: digits = "123", target = 6 |
| | | Output: [1+2+3, 1*2*3] |
| | | |
| | | Input: digits = "105", target = 5 |
| | | Output: [1*0+5, 10-5] |
+------------------------------------+------------------------------------------------------------------------------------------+
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Name | Problem Summary |
+=========================================+==========================================================================================+
| Find Largest Prime Factor | | Given a number, find its largest prime factor. A prime factor |
| | | is a factor that is a prime number. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Subarray with Maximum Sum | | Given an array of integers, find the contiguous subarray (containing |
| | | at least one number) which has the largest sum and return that sum. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Total Ways to Sum | | Given a number, how many different distinct ways can that number be written as |
| | | a sum of at least two positive integers? |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Total Ways to Sum II | | You are given an array with two elements. The first element is an integer n. |
| | | The second element is an array of numbers representing the set of available integers. |
| | | How many different distinct ways can that number n be written as |
| | | a sum of integers contained in the given set? |
| | | You may use each integer in the set zero or more times. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Spiralize Matrix | | Given an array of array of numbers representing a 2D matrix, return the |
| | | elements of that matrix in clockwise spiral order. |
| | | |
| | | Example: The spiral order of |
| | | |
| | | [1, 2, 3, 4] |
| | | [5, 6, 7, 8] |
| | | [9, 10, 11, 12] |
| | | |
| | | is [1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7] |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Array Jumping Game | | You are given an array of integers where each element represents the |
| | | maximum possible jump distance from that position. For example, if you |
| | | are at position i and your maximum jump length is n, then you can jump |
| | | to any position from i to i+n. |
| | | |
| | | Assuming you are initially positioned at the start of the array, determine |
| | | whether you are able to reach the last index of the array. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Array Jumping Game II | | You are given an array of integers where each element represents the |
| | | maximum possible jump distance from that position. For example, if you |
| | | are at position i and your maximum jump length is n, then you can jump |
| | | to any position from i to i+n. |
| | | |
| | | Assuming you are initially positioned at the start of the array, determine |
| | | the minimum number of jumps to reach the end of the array. |
| | | |
| | | If it's impossible to reach the end, then the answer should be 0. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Merge Overlapping Intervals | | Given an array of intervals, merge all overlapping intervals. An interval |
| | | is an array with two numbers, where the first number is always less than |
| | | the second (e.g. [1, 5]). |
| | | |
| | | The intervals must be returned in ASCENDING order. |
| | | |
| | | Example: |
| | | [[1, 3], [8, 10], [2, 6], [10, 16]] |
| | | merges into [[1, 6], [8, 16]] |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Generate IP Addresses | | Given a string containing only digits, return an array with all possible |
| | | valid IP address combinations that can be created from the string. |
| | | |
| | | An octet in the IP address cannot begin with '0' unless the number itself |
| | | is actually 0. For example, "192.168.010.1" is NOT a valid IP. |
| | | |
| | | Examples: |
| | | 25525511135 -> [255.255.11.135, 255.255.111.35] |
| | | 1938718066 -> [193.87.180.66] |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Algorithmic Stock Trader I | | You are given an array of numbers representing stock prices, where the |
| | | i-th element represents the stock price on day i. |
| | | |
| | | Determine the maximum possible profit you can earn using at most one |
| | | transaction (i.e. you can buy an sell the stock once). If no profit |
| | | can be made, then the answer should be 0. Note that you must buy the stock |
| | | before you can sell it. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Algorithmic Stock Trader II | | You are given an array of numbers representing stock prices, where the |
| | | i-th element represents the stock price on day i. |
| | | |
| | | Determine the maximum possible profit you can earn using as many transactions |
| | | as you'd like. A transaction is defined as buying and then selling one |
| | | share of the stock. Note that you cannot engage in multiple transactions at |
| | | once. In other words, you must sell the stock before you buy it again. If no |
| | | profit can be made, then the answer should be 0. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Algorithmic Stock Trader III | | You are given an array of numbers representing stock prices, where the |
| | | i-th element represents the stock price on day i. |
| | | |
| | | Determine the maximum possible profit you can earn using at most two |
| | | transactions. A transaction is defined as buying and then selling one share |
| | | of the stock. Note that you cannot engage in multiple transactions at once. |
| | | In other words, you must sell the stock before you buy it again. If no profit |
| | | can be made, then the answer should be 0. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Algorithmic Stock Trader IV | | You are given an array with two elements. The first element is an integer k. |
| | | The second element is an array of numbers representing stock prices, where the |
| | | i-th element represents the stock price on day i. |
| | | |
| | | Determine the maximum possible profit you can earn using at most k transactions. |
| | | A transaction is defined as buying and then selling one share of the stock. |
| | | Note that you cannot engage in multiple transactions at once. In other words, |
| | | you must sell the stock before you can buy it. If no profit can be made, then |
| | | the answer should be 0. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Minimum Path Sum in a Triangle | | You are given a 2D array of numbers (array of array of numbers) that represents a |
| | | triangle (the first array has one element, and each array has one more element than |
| | | the one before it, forming a triangle). Find the minimum path sum from the top to the |
| | | bottom of the triangle. In each step of the path, you may only move to adjacent |
| | | numbers in the row below. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Unique Paths in a Grid I | | You are given an array with two numbers: [m, n]. These numbers represent a |
| | | m x n grid. Assume you are initially positioned in the top-left corner of that |
| | | grid and that you are trying to reach the bottom-right corner. On each step, |
| | | you may only move down or to the right. |
| | | |
| | | |
| | | Determine how many unique paths there are from start to finish. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Unique Paths in a Grid II | | You are given a 2D array of numbers (array of array of numbers) representing |
| | | a grid. The 2D array contains 1's and 0's, where 1 represents an obstacle and |
| | | |
| | | 0 represents a free space. |
| | | |
| | | Assume you are initially positioned in top-left corner of that grid and that you |
| | | are trying to reach the bottom-right corner. In each step, you may only move down |
| | | or to the right. Furthermore, you cannot move onto spaces which have obstacles. |
| | | |
| | | Determine how many unique paths there are from start to finish. |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Shortest Path in a Grid | | You are given a 2D array of numbers (array of array of numbers) representing |
| | | a grid. The 2D array contains 1's and 0's, where 1 represents an obstacle and |
| | | 0 represents a free space. |
| | | |
| | | Assume you are initially positioned in top-left corner of that grid and that you |
| | | are trying to reach the bottom-right corner. In each step, you may move to the up, |
| | | down, left or right. Furthermore, you cannot move onto spaces which have obstacles. |
| | | |
| | | Determine if paths exist from start to destination, and find the shortest one. |
| | | |
| | | Examples: |
| | | [[0,1,0,0,0], |
| | | [0,0,0,1,0]] -> "DRRURRD" |
| | | [[0,1], |
| | | [1,0]] -> "" |
| | | |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Sanitize Parentheses in Expression | | Given a string with parentheses and letters, remove the minimum number of invalid |
| | | parentheses in order to validate the string. If there are multiple minimal ways |
| | | to validate the string, provide all of the possible results. |
| | | |
| | | The answer should be provided as an array of strings. If it is impossible to validate |
| | | the string, the result should be an array with only an empty string. |
| | | |
| | | Examples: |
| | | ()())() -> [()()(), (())()] |
| | | (a)())() -> [(a)()(), (a())()] |
| | | )( -> [""] |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Find All Valid Math Expressions | | You are given a string which contains only digits between 0 and 9 as well as a target |
| | | number. Return all possible ways you can add the +, -, and * operators to the string |
| | | of digits such that it evaluates to the target number. |
| | | |
| | | The answer should be provided as an array of strings containing the valid expressions. |
| | | |
| | | NOTE: Numbers in an expression cannot have leading 0's |
| | | NOTE: The order of evaluation expects script operator precedence |
| | | |
| | | Examples: |
| | | Input: digits = "123", target = 6 |
| | | Output: [1+2+3, 1*2*3] |
| | | |
| | | Input: digits = "105", target = 5 |
| | | Output: [1*0+5, 10-5] |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| HammingCodes: Integer to Encoded Binary | | You are given a decimal value. |
| | | Convert it into a binary string and encode it as a 'Hamming-Code'. eg: |
| | | Value 8 will result into binary '1000', which will be encoded |
| | | with the pattern 'pppdpddd', where p is a paritybit and d a databit, |
| | | or '10101' (Value 21) will result into (pppdpdddpd) '1001101011'. |
| | | NOTE: You need an parity Bit on Index 0 as an 'overall'-paritybit. |
| | | NOTE 2: You should watch the HammingCode-video from 3Blue1Brown, which |
| | | explains the 'rule' of encoding, |
| | | including the first Index parity-bit mentioned on the first note. |
| | | Now the only one rule for this encoding: |
| | | It's not allowed to add additional leading '0's to the binary value |
| | | That means, the binary value has to be encoded as it is |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| HammingCodes: Encoded Binary to Integer | | You are given an encoded binary string. |
| | | Treat it as a Hammingcode with 1 'possible' error on an random Index. |
| | | Find the 'possible' wrong bit, fix it and extract the decimal value, which is |
| | | hidden inside the string.\n\n", |
| | | Note: The length of the binary string is dynamic, but it's encoding/decoding is |
| | | following Hammings 'rule'\n", |
| | | Note 2: Index 0 is an 'overall' parity bit. Watch the Hammingcode-video from |
| | | 3Blue1Brown for more information\n", |
| | | Note 3: There's a ~55% chance for an altered Bit. So... MAYBE |
| | | there is an altered Bit 😉\n", |
| | | Extranote for automation: return the decimal value as a string", |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Proper 2-Coloring of a Graph | | You are given data, representing a graph. Note that "graph", as used here, refers to |
| | | the field of graph theory, and has no relation to statistics or plotting. |
| | | |
| | | The first element of the data represents the number of vertices in the graph. Each |
| | | vertex is a unique number between 0 and ${data[0] - 1}. The next element of the data |
| | | represents the edges of the graph. |
| | | |
| | | Two vertices u,v in a graph are said to be adjacent if there exists an edge [u,v]. |
| | | Note that an edge [u,v] is the same as an edge [v,u], as order does not matter. |
| | | |
| | | You must construct a 2-coloring of the graph, meaning that you have to assign each |
| | | vertex in the graph a "color", either 0 or 1, such that no two adjacent vertices have |
| | | the same color. Submit your answer in the form of an array, where element i |
| | | represents the color of vertex i. If it is impossible to construct a 2-coloring of |
| | | the given graph, instead submit an empty array. |
| | | |
| | | Examples: |
| | | |
| | | Input: [4, [[0, 2], [0, 3], [1, 2], [1, 3]]] |
| | | Output: [0, 0, 1, 1] |
| | | |
| | | Input: [3, [[0, 1], [0, 2], [1, 2]]] |
| | | Output: [] |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Compression I: RLE Compression | | Run-length encoding (RLE) is a data compression technique which encodes data as a |
| | | series of runs of a repeated single character. Runs are encoded as a length, followed |
| | | by the character itself. Lengths are encoded as a single ASCII digit; runs of 10 |
| | | characters or more are encoded by splitting them into multiple runs. |
| | | |
| | | You are given a string as input. Encode it using run-length encoding with the minimum |
| | | possible output length. |
| | | |
| | | Examples: |
| | | aaaaabccc -> 5a1b3c |
| | | aAaAaA -> 1a1A1a1A1a1A |
| | | 111112333 -> 511233 |
| | | zzzzzzzzzzzzzzzzzzz -> 9z9z1z (or 9z8z2z, etc.) |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Compression II: LZ Decompression | | Lempel-Ziv (LZ) compression is a data compression technique which encodes data using |
| | | references to earlier parts of the data. In this variant of LZ, data is encoded in two |
| | | types of chunk. Each chunk begins with a length L, encoded as a single ASCII digit |
| | | from 1 - 9, followed by the chunk data, which is either: |
| | | |
| | | 1. Exactly L characters, which are to be copied directly into the uncompressed data. |
| | | 2. A reference to an earlier part of the uncompressed data. To do this, the length |
| | | is followed by a second ASCII digit X: each of the L output characters is a copy |
| | | of the character X places before it in the uncompressed data. |
| | | |
| | | For both chunk types, a length of 0 instead means the chunk ends immediately, and the |
| | | next character is the start of a new chunk. The two chunk types alternate, starting |
| | | with type 1, and the final chunk may be of either type. |
| | | |
| | | You are given an LZ-encoded string. Decode it and output the original string. |
| | | |
| | | Example: decoding '5aaabc340533bca' chunk-by-chunk |
| | | 5aaabc -> aaabc |
| | | 5aaabc34 -> aaabcaab |
| | | 5aaabc340 -> aaabcaab |
| | | 5aaabc34053 -> aaabcaabaabaa |
| | | 5aaabc340533bca -> aaabcaabaabaabca |
+-----------------------------------------+------------------------------------------------------------------------------------------+
| Compression III: LZ Compression | | Lempel-Ziv (LZ) compression is a data compression technique which encodes data using |
| | | references to earlier parts of the data. In this variant of LZ, data is encoded in two |
| | | types of chunk. Each chunk begins with a length L, encoded as a single ASCII digit |
| | | from 1 - 9, followed by the chunk data, which is either: |
| | | |
| | | 1. Exactly L characters, which are to be copied directly into the uncompressed data. |
| | | 2. A reference to an earlier part of the uncompressed data. To do this, the length |
| | | is followed by a second ASCII digit X: each of the L output characters is a copy |
| | | of the character X places before it in the uncompressed data. |
| | | |
| | | For both chunk types, a length of 0 instead means the chunk ends immediately, and the |
| | | next character is the start of a new chunk. The two chunk types alternate, starting |
| | | with type 1, and the final chunk may be of either type. |
| | | |
| | | You are given a string as input. Encode it using Lempel-Ziv encoding with the minimum |
| | | possible output length. |
| | | |
| | | Examples (some have other possible encodings of minimal length): |
| | | abracadabra -> 7abracad47 |
| | | mississippi -> 4miss433ppi |
| | | aAAaAAaAaAA -> 3aAA53035 |
| | | 2718281828 -> 627182844 |
| | | abcdefghijk -> 9abcdefghi02jk |
| | | aaaaaaaaaaa -> 1a911a |
| | | aaaaaaaaaaaa -> 1a912aa |
| | | aaaaaaaaaaaaa -> 1a91031 |
+-----------------------------------------+------------------------------------------------------------------------------------------+

@ -163,7 +163,9 @@ export function BitverseRoot(props: IProps): React.ReactElement {
return lvl;
}
const max = n === 12 ? Infinity : 3;
return Math.min(max, lvl + 1);
// If accessed via flume, display the current BN level, else the next
return Math.min(max, lvl + Number(!props.flume));
};
if (Settings.DisableASCIIArt) {

@ -164,9 +164,9 @@ export function Roulette(props: IProps): React.ReactElement {
let playerWin = strategy.match(n);
// oh yeah, the house straight up cheats. Try finding the seed now!
if (playerWin && Math.random() > 0.9) {
playerWin = false;
while (strategy.match(n)) {
n = (n + 1) % 36;
while (playerWin) {
n = Math.floor(rng.random() * 37);
playerWin = strategy.match(n);
}
}
if (playerWin) {

@ -293,7 +293,7 @@ export const CONSTANTS: {
// BitNode/Source-File related stuff
TotalNumBitNodes: 24,
Donations: 4,
Donations: 6,
LatestUpdate: `
v1.6.3 - 2022-04-01 Few stanek fixes

@ -18,11 +18,11 @@ import { Faction } from "../Faction";
import { use } from "../../ui/Context";
import { CreateGangModal } from "./CreateGangModal";
import Typography from "@mui/material/Typography";
import Button from "@mui/material/Button";
import { Box, Paper, Typography, Button, Tooltip } from "@mui/material";
import { CovenantPurchasesRoot } from "../../PersonObjects/Sleeve/ui/CovenantPurchasesRoot";
import { FactionNames } from "../data/FactionNames";
import { GangConstants } from "../../Gang/data/Constants";
import { GangButton } from "./GangButton";
type IProps = {
faction: Faction;
@ -62,18 +62,8 @@ function MainPage({ faction, rerender, onAugmentations }: IMainProps): React.Rea
const player = use.Player();
const router = use.Router();
const [sleevesOpen, setSleevesOpen] = useState(false);
const [gangOpen, setGangOpen] = useState(false);
const factionInfo = faction.getInfo();
function manageGang(): void {
// If player already has a gang, just go to the gang UI
if (player.inGang()) {
return router.toGang();
}
setGangOpen(true);
}
function startWork(): void {
player.startFocusing();
router.toWork();
@ -105,15 +95,6 @@ function MainPage({ faction, rerender, onAugmentations }: IMainProps): React.Rea
const canPurchaseSleeves = faction.name === FactionNames.TheCovenant && player.bitNodeN === 10;
let canAccessGang = player.canAccessGang() && GangConstants.Names.includes(faction.name);
if (player.inGang()) {
if (player.getGangName() !== faction.name) {
canAccessGang = false;
} else if (player.getGangName() === faction.name) {
canAccessGang = true;
}
}
return (
<>
<Button onClick={() => router.toFactions()}>Back</Button>
@ -121,12 +102,7 @@ function MainPage({ faction, rerender, onAugmentations }: IMainProps): React.Rea
{faction.name}
</Typography>
<Info faction={faction} factionInfo={factionInfo} />
{canAccessGang && (
<>
<Option buttonText={"Manage Gang"} infoText={gangInfo} onClick={manageGang} />
<CreateGangModal facName={faction.name} open={gangOpen} onClose={() => setGangOpen(false)} />
</>
)}
<GangButton faction={faction} />
{!isPlayersGang && factionInfo.offerHackingWork && (
<Option
buttonText={"Hacking Contracts"}

@ -0,0 +1,79 @@
import { Button, Typography, Box, Paper, Tooltip } from "@mui/material";
import React, { useState } from "react";
import { GangConstants } from "../../Gang/data/Constants";
import { use } from "../../ui/Context";
import { Faction } from "../Faction";
import { CreateGangModal } from "./CreateGangModal";
type IProps = {
faction: Faction;
};
export function GangButton({ faction }: IProps): React.ReactElement {
const player = use.Player();
const router = use.Router();
const [gangOpen, setGangOpen] = useState(false);
if (
!GangConstants.Names.includes(faction.name) || // not even a gang
!player.isAwareOfGang() || // doesn't know about gang
(player.inGang() && player.getGangName() !== faction.name) // already in another gang
) {
return <></>;
}
let data = {
enabled: false,
title: "",
tooltip: "" as string | React.ReactElement,
description: "",
};
if (player.inGang()) {
data = {
enabled: true,
title: "Manage Gang",
tooltip: "",
description: "Manage a gang for this Faction. Gangs will earn you money and faction reputation",
};
} else {
data = {
enabled: player.canAccessGang(),
title: "Create Gang",
tooltip: !player.canAccessGang() ? (
<Typography>Unlocked when reaching {GangConstants.GangKarmaRequirement} karma</Typography>
) : (
""
),
description: "Create a gang for this Faction. Gangs will earn you money and faction reputation",
};
}
const manageGang = (): void => {
// If player already has a gang, just go to the gang UI
if (player.inGang()) {
return router.toGang();
}
setGangOpen(true);
};
return (
<>
<Box>
<Paper sx={{ my: 1, p: 1 }}>
<Tooltip title={data.tooltip}>
<span>
<Button onClick={manageGang} disabled={!data.enabled}>
{data.title}
</Button>
</span>
</Tooltip>
<Typography>{data.description}</Typography>
</Paper>
</Box>
<CreateGangModal facName={faction.name} open={gangOpen} onClose={() => setGangOpen(false)} />
</>
);
}

@ -6,6 +6,7 @@ export const GangConstants: {
CyclesPerTerritoryAndPowerUpdate: number;
AscensionMultiplierRatio: number;
Names: string[];
GangKarmaRequirement: number;
} = {
// Respect is divided by this to get rep gain
GangRespectToReputationRatio: 75,
@ -23,4 +24,5 @@ export const GangConstants: {
FactionNames.NiteSec,
FactionNames.TheBlackHand,
],
GangKarmaRequirement: -54000,
};

@ -42,6 +42,7 @@ export const HashUpgradesMetadata: IConstructorParams[] = [
costPerLevel: 50,
desc:
"Use hashes to increase the maximum amount of money on a single server by 2%. " +
"Note that a server's maximum money is soft capped above $10t. " +
"This effect persists until you install Augmentations (since servers " +
"are reset at that time).",
hasTargetServer: true,

@ -17,7 +17,7 @@ export function calculateSellInformationCashReward(
Math.pow(difficulty, 3) *
3e3 *
levelBonus *
(player.hasAugmentation(AugmentationNames.WKSharmonizer) ? 1.5 : 1) *
(player.hasAugmentation(AugmentationNames.WKSharmonizer, true) ? 1.5 : 1) *
BitNodeMultipliers.InfiltrationMoney
);
}
@ -35,7 +35,7 @@ export function calculateTradeInformationRepReward(
Math.pow(difficulty, 3) *
3e3 *
levelBonus *
(player.hasAugmentation(AugmentationNames.WKSharmonizer) ? 1.5 : 1) *
(player.hasAugmentation(AugmentationNames.WKSharmonizer, true) ? 1.5 : 1) *
BitNodeMultipliers.InfiltrationMoney
);
}
@ -47,5 +47,7 @@ export function calculateInfiltratorsRepReward(player: IPlayer, faction: Faction
}, 0);
const baseRepGain = (difficulty / maxStartingSecurityLevel) * 5000;
return baseRepGain * (player.hasAugmentation(AugmentationNames.WKSharmonizer) ? 2 : 1) * (1 + faction.favor / 100);
return (
baseRepGain * (player.hasAugmentation(AugmentationNames.WKSharmonizer, true) ? 2 : 1) * (1 + faction.favor / 100)
);
}

@ -94,7 +94,7 @@ export function Game(props: IProps): React.ReactElement {
// it's clear they're not meant to
const damage = options?.automated
? player.hp
: props.StartingDifficulty * 3 * (player.hasAugmentation(AugmentationNames.WKSharmonizer) ? 0.5 : 1);
: props.StartingDifficulty * 3 * (player.hasAugmentation(AugmentationNames.WKSharmonizer, true) ? 0.5 : 1);
if (player.takeDamage(damage)) {
router.toCity();
return;
@ -113,16 +113,7 @@ export function Game(props: IProps): React.ReactElement {
stageComponent = <Countdown onFinish={() => setStage(Stage.Minigame)} />;
break;
case Stage.Minigame: {
/**
*
BackwardGame,
BribeGame,
CheatCodeGame,
Cyberpunk2077Game,
MinesweeperGame,
WireCuttingGame,
*/
const MiniGame = WireCuttingGame; // minigames[gameIds.id];
const MiniGame = minigames[gameIds.id];
stageComponent = <MiniGame onSuccess={success} onFailure={failure} difficulty={props.Difficulty + level / 50} />;
break;
}

@ -24,7 +24,7 @@ interface IProps {
export function GameTimer(props: IProps): React.ReactElement {
const player = use.Player();
const [v, setV] = useState(100);
const totalMillis = (player.hasAugmentation(AugmentationNames.WKSharmonizer) ? 1.3 : 1) * props.millis;
const totalMillis = (player.hasAugmentation(AugmentationNames.WKSharmonizer, true) ? 1.3 : 1) * props.millis;
const tick = 200;
useEffect(() => {

@ -4,7 +4,7 @@ import { CityName } from "../Locations/data/CityNames";
import { getRamCost } from "../Netscript/RamCostGenerator";
import { WorkerScript } from "../Netscript/WorkerScript";
import { GraftableAugmentation } from "../PersonObjects/Grafting/GraftableAugmentation";
import { getGraftingAvailableAugs } from "../PersonObjects/Grafting/GraftingHelpers";
import { getGraftingAvailableAugs, calculateGraftingTimeWithBonus } from "../PersonObjects/Grafting/GraftingHelpers";
import { IPlayer } from "../PersonObjects/IPlayer";
import { Grafting as IGrafting } from "../ScriptEditor/NetscriptDefinitions";
import { Router } from "../ui/GameRoot";
@ -31,8 +31,8 @@ export function NetscriptGrafting(player: IPlayer, workerScript: WorkerScript, h
if (!getGraftingAvailableAugs(player).includes(augName) || !StaticAugmentations.hasOwnProperty(augName)) {
throw helper.makeRuntimeErrorMsg("grafting.getAugmentationGraftPrice", `Invalid aug: ${augName}`);
}
const craftableAug = new GraftableAugmentation(StaticAugmentations[augName]);
return craftableAug.cost;
const graftableAug = new GraftableAugmentation(StaticAugmentations[augName]);
return graftableAug.cost;
},
getAugmentationGraftTime: (_augName: string): number => {
@ -42,8 +42,8 @@ export function NetscriptGrafting(player: IPlayer, workerScript: WorkerScript, h
if (!getGraftingAvailableAugs(player).includes(augName) || !StaticAugmentations.hasOwnProperty(augName)) {
throw helper.makeRuntimeErrorMsg("grafting.getAugmentationGraftTime", `Invalid aug: ${augName}`);
}
const craftableAug = new GraftableAugmentation(StaticAugmentations[augName]);
return craftableAug.time;
const graftableAug = new GraftableAugmentation(StaticAugmentations[augName]);
return calculateGraftingTimeWithBonus(player, graftableAug);
},
getGraftableAugmentations: (): string[] => {

@ -202,7 +202,7 @@ function _getScriptUrls(script: Script, scripts: Script[], seen: Script[]): Scri
// We automatically define a print function() in the NetscriptJS module so that
// accidental calls to window.print() do not bring up the "print screen" dialog
transformedCode += `\n\nfunction print() {throw new Error("Invalid call to window.print(). Did you mean to use Netscript's print()?");}\n//# sourceURL=${script.server}/${script.filename}`;
transformedCode += `\n//# sourceURL=${script.server}/${script.filename}`;
const blob = URL.createObjectURL(makeScriptBlob(transformedCode));
// Push the blob URL onto the top of the stack.

@ -1,5 +1,6 @@
import { StaticAugmentations } from "../../Augmentation/StaticAugmentations";
import { AugmentationNames } from "../../Augmentation/data/AugmentationNames";
import { GraftableAugmentation } from "./GraftableAugmentation";
import { IPlayer } from "../IPlayer";
export const getGraftingAvailableAugs = (player: IPlayer): string[] => {
@ -13,3 +14,12 @@ export const getGraftingAvailableAugs = (player: IPlayer): string[] => {
return augs.filter((augmentation: string) => !player.hasAugmentation(augmentation));
};
export const graftingIntBonus = (player: IPlayer): number => {
return 1 + (player.getIntelligenceBonus(3) - 1) / 3;
};
export const calculateGraftingTimeWithBonus = (player: IPlayer, aug: GraftableAugmentation): number => {
const baseTime = aug.time;
return baseTime / graftingIntBonus(player);
};

@ -1,6 +1,6 @@
import { Construction, CheckBox, CheckBoxOutlineBlank } from "@mui/icons-material";
import { Box, Button, Container, List, ListItemButton, Paper, Typography } from "@mui/material";
import React, { useState } from "react";
import React, { useState, useEffect } from "react";
import { Augmentation } from "../../../Augmentation/Augmentation";
import { StaticAugmentations } from "../../../Augmentation/StaticAugmentations";
import { AugmentationNames } from "../../../Augmentation/data/AugmentationNames";
@ -15,7 +15,7 @@ import { ConfirmationModal } from "../../../ui/React/ConfirmationModal";
import { Money } from "../../../ui/React/Money";
import { convertTimeMsToTimeElapsedString, formatNumber } from "../../../utils/StringHelperFunctions";
import { IPlayer } from "../../IPlayer";
import { getGraftingAvailableAugs } from "../GraftingHelpers";
import { getGraftingAvailableAugs, calculateGraftingTimeWithBonus } from "../GraftingHelpers";
import { GraftableAugmentation } from "../GraftableAugmentation";
const GraftableAugmentations: IMap<GraftableAugmentation> = {};
@ -63,6 +63,17 @@ export const GraftingRoot = (): React.ReactElement => {
const [selectedAug, setSelectedAug] = useState(getGraftingAvailableAugs(player)[0]);
const [graftOpen, setGraftOpen] = useState(false);
const selectedAugmentation = StaticAugmentations[selectedAug];
const setRerender = useState(false)[1];
function rerender(): void {
setRerender((old) => !old);
}
useEffect(() => {
const id = setInterval(rerender, 200);
return () => clearInterval(id);
}, []);
return (
<Container disableGutters maxWidth="lg" sx={{ mx: 0 }}>
<Button onClick={() => router.toLocation(Locations[LocationName.NewTokyoVitaLife])}>Back</Button>
@ -132,7 +143,7 @@ export const GraftingRoot = (): React.ReactElement => {
<Typography color={Settings.theme.info}>
<b>Time to Graft:</b>{" "}
{convertTimeMsToTimeElapsedString(
GraftableAugmentations[selectedAug].time / (1 + (player.getIntelligenceBonus(3) - 1) / 3),
calculateGraftingTimeWithBonus(player, GraftableAugmentations[selectedAug]),
)}
{/* Use formula so the displayed creation time is accurate to player bonus */}
</Typography>

@ -208,6 +208,7 @@ export interface IPlayer {
hasProgram(program: string): boolean;
inBladeburner(): boolean;
inGang(): boolean;
isAwareOfGang(): boolean;
isQualified(company: Company, position: CompanyPosition): boolean;
loseMoney(money: number, source: string): void;
process(router: IRouter, numCycles?: number): void;

@ -218,6 +218,7 @@ export class PlayerObject implements IPlayer {
hasProgram: (program: string) => boolean;
inBladeburner: () => boolean;
inGang: () => boolean;
isAwareOfGang: () => boolean;
isQualified: (company: Company, position: CompanyPosition) => boolean;
loseMoney: (money: number, source: string) => void;
reapplyAllAugmentations: (resetMultipliers?: boolean) => void;
@ -604,6 +605,7 @@ export class PlayerObject implements IPlayer {
this.hasCorporation = corporationMethods.hasCorporation;
this.startCorporation = corporationMethods.startCorporation;
this.canAccessGang = gangMethods.canAccessGang;
this.isAwareOfGang = gangMethods.isAwareOfGang;
this.getGangFaction = gangMethods.getGangFaction;
this.getGangName = gangMethods.getGangName;
this.hasGangWith = gangMethods.hasGangWith;

@ -2,9 +2,9 @@ import { Factions } from "../../Faction/Factions";
import { Faction } from "../../Faction/Faction";
import { Gang } from "../../Gang/Gang";
import { IPlayer } from "../IPlayer";
import { GangConstants } from "../../Gang/data/Constants"
// Amount of negative karma needed to manage a gang in BitNodes other than 2
const GangKarmaRequirement = -54000;
export function canAccessGang(this: IPlayer): boolean {
if (this.bitNodeN === 2) {
@ -14,7 +14,11 @@ export function canAccessGang(this: IPlayer): boolean {
return false;
}
return this.karma <= GangKarmaRequirement;
return this.karma <= GangConstants.GangKarmaRequirement;
}
export function isAwareOfGang(this: IPlayer): boolean {
return this.bitNodeN === 2 || this.sourceFileLvl(2) >= 1;
}
export function getGangFaction(this: IPlayer): Faction {

@ -64,6 +64,7 @@ import { SnackbarEvents, ToastVariant } from "../../ui/React/Snackbar";
import { calculateClassEarnings } from "../formulas/work";
import { achievements } from "../../Achievements/Achievements";
import { FactionNames } from "../../Faction/data/FactionNames";
import { graftingIntBonus } from "../Grafting/GraftingHelpers";
export function init(this: IPlayer): void {
/* Initialize Player's home computer */
@ -1349,7 +1350,7 @@ export function craftAugmentationWork(this: IPlayer, numCycles: number): boolean
focusBonus = this.focus ? 1 : CONSTANTS.BaseFocusBonus;
}
let skillMult = 1 + (this.getIntelligenceBonus(3) - 1) / 3;
let skillMult = graftingIntBonus(this);
skillMult *= focusBonus;
this.timeWorked += CONSTANTS._idleSpeed * numCycles;

@ -519,6 +519,14 @@ export class Sleeve extends Person {
break;
}
// If the player has a gang with the faction the sleeve is working
// for, we need to reset the sleeve's task
if (p.gang) {
if (fac.name === p.gang.facName) {
this.resetTaskStatus();
}
}
fac.playerReputation += this.getRepGain(p) * cyclesUsed;
break;
}

@ -110,6 +110,8 @@ const tasks: {
first: factions,
second: (s1: string) => {
const faction = Factions[s1];
if (!faction) return ["------"];
const facInfo = faction.getInfo();
const options: string[] = [];
if (facInfo.offerHackingWork) {
@ -260,7 +262,7 @@ export function TaskSelector(props: IProps): React.ReactElement {
const detailsF = tasks[n];
if (detailsF === undefined) throw new Error(`No function for task '${s0}'`);
const details = detailsF(props.player, props.sleeve);
const details2 = details.second(details.first[0]);
const details2 = details.second(details.first[0]) ?? ["------"];
setS2(details2[0]);
setS1(details.first[0]);
setS0(n);

@ -2198,7 +2198,7 @@ export interface Singularity {
* RAM cost: 5 GB * 16/4/1
*
*
* This function will automatically install your Augmentations, resetting the game as usual.
* This function will automatically install your Augmentations, resetting the game as usual. If you do not own uninstalled Augmentations then the game will not reset.
*
* @param cbScript - This is a script that will automatically be run after Augmentations are installed (after the reset). This script will be run with no arguments and 1 thread. It must be located on your home computer.
*/

@ -1,6 +1,7 @@
import { getRandomInt } from "../utils/helpers/getRandomInt";
import { MinHeap } from "../utils/Heap";
import { comprGenChar, comprLZGenerate, comprLZEncode, comprLZDecode } from "../utils/CompressionContracts";
import { HammingEncode, HammingDecode } from "../utils/HammingCodeTools";
/* tslint:disable:completed-docs no-magic-numbers arrow-return-shorthand */
@ -1456,4 +1457,155 @@ export const codingContractTypesMetadata: ICodingContractTypeMetadata[] = [
else return false;
},
},
{
name: "Compression I: RLE Compression",
difficulty: 2,
numTries: 10,
desc: (plaintext: string): string => {
return [
"Run-length encoding (RLE) is a data compression technique which encodes data as a series of runs of",
"a repeated single character. Runs are encoded as a length, followed by the character itself. Lengths",
"are encoded as a single ASCII digit; runs of 10 characters or more are encoded by splitting them",
"into multiple runs.\n\n",
"You are given the following input string:\n",
`&nbsp; &nbsp; ${plaintext}\n`,
"Encode it using run-length encoding with the minimum possible output length.\n\n",
"Examples:\n",
"&nbsp; &nbsp; aaaaabccc &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;-> &nbsp;5a1b3c\n",
"&nbsp; &nbsp; aAaAaA &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; -> &nbsp;1a1A1a1A1a1A\n",
"&nbsp; &nbsp; 111112333 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;-> &nbsp;511233\n",
"&nbsp; &nbsp; zzzzzzzzzzzzzzzzzzz &nbsp;-> &nbsp;9z9z1z &nbsp;(or 9z8z2z, etc.)\n",
].join(" ");
},
gen: (): string => {
const length = 50 + Math.floor(25 * (Math.random() + Math.random()));
let plain = "";
while (plain.length < length) {
const r = Math.random();
let n = 1;
if (r < 0.3) {
n = 1;
} else if (r < 0.6) {
n = 2;
} else if (r < 0.9) {
n = Math.floor(10 * Math.random());
} else {
n = 10 + Math.floor(5 * Math.random());
}
const c = comprGenChar();
plain += c.repeat(n);
}
return plain.substring(0, length);
},
solver: (plain: string, ans: string): boolean => {
if (ans.length % 2 !== 0) {
return false;
}
let ans_plain = "";
for (let i = 0; i + 1 < ans.length; i += 2) {
const length = ans.charCodeAt(i) - 0x30;
if (length < 0 || length > 9) {
return false;
}
ans_plain += ans[i + 1].repeat(length);
}
if (ans_plain !== plain) {
return false;
}
let length = 0;
for (let i = 0; i < plain.length; ) {
let run_length = 1;
while (i + run_length < plain.length && plain[i + run_length] === plain[i]) {
++run_length;
}
i += run_length;
while (run_length > 0) {
run_length -= 9;
length += 2;
}
}
return ans.length === length;
},
},
{
name: "Compression II: LZ Decompression",
difficulty: 4,
numTries: 10,
desc: (compressed: string): string => {
return [
"Lempel-Ziv (LZ) compression is a data compression technique which encodes data using references to",
"earlier parts of the data. In this variant of LZ, data is encoded in two types of chunk. Each chunk",
"begins with a length L, encoded as a single ASCII digit from 1 - 9, followed by the chunk data,",
"which is either:\n\n",
"1. Exactly L characters, which are to be copied directly into the uncompressed data.\n",
"2. A reference to an earlier part of the uncompressed data. To do this, the length is followed",
"by a second ASCII digit X: each of the L output characters is a copy of the character X",
"places before it in the uncompressed data.\n\n",
"For both chunk types, a length of 0 instead means the chunk ends immediately, and the next character",
"is the start of a new chunk. The two chunk types alternate, starting with type 1, and the final",
"chunk may be of either type.\n\n",
"You are given the following LZ-encoded string:\n",
`&nbsp; &nbsp; ${compressed}\n`,
"Decode it and output the original string.\n\n",
"Example: decoding '5aaabc340533bca' chunk-by-chunk\n",
"&nbsp; &nbsp; 5aaabc &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; -> &nbsp;aaabc\n",
"&nbsp; &nbsp; 5aaabc34 &nbsp; &nbsp; &nbsp; &nbsp; -> &nbsp;aaabcaab\n",
"&nbsp; &nbsp; 5aaabc340 &nbsp; &nbsp; &nbsp; &nbsp;-> &nbsp;aaabcaab\n",
"&nbsp; &nbsp; 5aaabc34053 &nbsp; &nbsp; &nbsp;-> &nbsp;aaabcaabaabaa\n",
"&nbsp; &nbsp; 5aaabc340533bca &nbsp;-> &nbsp;aaabcaabaabaabca",
].join(" ");
},
gen: (): string => {
return comprLZEncode(comprLZGenerate());
},
solver: (compr: string, ans: string): boolean => {
return ans === comprLZDecode(compr);
},
},
{
name: "Compression III: LZ Compression",
difficulty: 10,
numTries: 10,
desc: (plaintext: string): string => {
return [
"Lempel-Ziv (LZ) compression is a data compression technique which encodes data using references to",
"earlier parts of the data. In this variant of LZ, data is encoded in two types of chunk. Each chunk",
"begins with a length L, encoded as a single ASCII digit from 1 - 9, followed by the chunk data,",
"which is either:\n\n",
"1. Exactly L characters, which are to be copied directly into the uncompressed data.\n",
"2. A reference to an earlier part of the uncompressed data. To do this, the length is followed",
"by a second ASCII digit X: each of the L output characters is a copy of the character X",
"places before it in the uncompressed data.\n\n",
"For both chunk types, a length of 0 instead means the chunk ends immediately, and the next character",
"is the start of a new chunk. The two chunk types alternate, starting with type 1, and the final",
"chunk may be of either type.\n\n",
"You are given the following input string:\n",
`&nbsp; &nbsp; ${plaintext}\n`,
"Encode it using Lempel-Ziv encoding with the minimum possible output length.\n\n",
"Examples (some have other possible encodings of minimal length):\n",
"&nbsp; &nbsp; abracadabra &nbsp; &nbsp;-> &nbsp;7abracad47\n",
"&nbsp; &nbsp; mississippi &nbsp; &nbsp;-> &nbsp;4miss433ppi\n",
"&nbsp; &nbsp; aAAaAAaAaAA &nbsp; &nbsp;-> &nbsp;3aAA53035\n",
"&nbsp; &nbsp; 2718281828 &nbsp; &nbsp; -> &nbsp;627182844\n",
"&nbsp; &nbsp; abcdefghijk &nbsp; &nbsp;-> &nbsp;9abcdefghi02jk\n",
"&nbsp; &nbsp; aaaaaaaaaaa &nbsp; &nbsp;-> &nbsp;1a911a\n",
"&nbsp; &nbsp; aaaaaaaaaaaa &nbsp; -> &nbsp;1a912aa\n",
"&nbsp; &nbsp; aaaaaaaaaaaaa &nbsp;-> &nbsp;1a91031",
].join(" ");
},
gen: (): string => {
return comprLZGenerate();
},
solver: (plain: string, ans: string): boolean => {
return comprLZDecode(ans) === plain && ans.length === comprLZEncode(plain).length;
},
},
];

@ -4,6 +4,7 @@ import ReactDOM from "react-dom";
import { TTheme as Theme, ThemeEvents, refreshTheme } from "./Themes/ui/Theme";
import { LoadingScreen } from "./ui/LoadingScreen";
import { initElectron } from "./Electron";
import { AlertEvents } from "./ui/React/AlertManager";
initElectron();
globalThis["React"] = React;
globalThis["ReactDOM"] = ReactDOM;
@ -34,3 +35,9 @@ function rerender(): void {
return "Your work will be lost.";
};
})();
(function () {
window.print = () => {
throw new Error("You accidentally called window.print instead of ns.print");
};
})();

@ -96,6 +96,9 @@ const useStyles = makeStyles((theme: Theme) =>
display: "flex",
flexDirection: "column-reverse",
},
titleButton: {
padding: "1px 6px",
},
success: {
color: theme.colors.success,
},
@ -260,28 +263,25 @@ function LogWindow(props: IProps): React.ReactElement {
}}
>
<Box className="drag" display="flex" alignItems="center" ref={draggableRef}>
<Typography color="primary" variant="h6" title={title(true)}>
<Typography color="primary" variant="h6" sx={{ marginRight: "auto" }} title={title(true)}>
{title()}
</Typography>
<Box position="absolute" right={0}>
{!workerScripts.has(script.pid) && (
<Button onClick={run} onTouchEnd={run}>
Run
</Button>
)}
{workerScripts.has(script.pid) && (
<Button onClick={kill} onTouchEnd={kill}>
Kill
</Button>
)}
<Button onClick={minimize} onTouchEnd={minimize}>
{minimized ? "\u{1F5D6}" : "\u{1F5D5}"}
{!workerScripts.has(script.pid) ? (
<Button className={classes.titleButton} onClick={run} onTouchEnd={run}>
Run
</Button>
<Button onClick={props.onClose} onTouchEnd={props.onClose}>
Close
) : (
<Button className={classes.titleButton} onClick={kill} onTouchEnd={kill}>
Kill
</Button>
</Box>
)}
<Button className={classes.titleButton} onClick={minimize} onTouchEnd={minimize}>
{minimized ? "\u{1F5D6}" : "\u{1F5D5}"}
</Button>
<Button className={classes.titleButton} onClick={props.onClose} onTouchEnd={props.onClose}>
Close
</Button>
</Box>
</Paper>
<Paper sx={{ overflow: "scroll", overflowWrap: "break-word", whiteSpace: "pre-wrap" }}>
@ -289,6 +289,7 @@ function LogWindow(props: IProps): React.ReactElement {
className={classes.logs}
height={500}
width={500}
minConstraints={[250, 30]}
handle={
<span style={{ position: "absolute", right: "-10px", bottom: "-13px", cursor: "nw-resize" }}>
<ArrowForwardIosIcon color="primary" style={{ transform: "rotate(45deg)" }} />

@ -0,0 +1,193 @@
// choose random character for generating plaintexts to compress
export function comprGenChar(): string {
const r = Math.random();
if (r < 0.4) {
return "ABCDEFGHIJKLMNOPQRSTUVWXYZ"[Math.floor(26 * Math.random())];
} else if (r < 0.8) {
return "abcdefghijklmnopqrstuvwxyz"[Math.floor(26 * Math.random())];
} else {
return "01234567689"[Math.floor(10 * Math.random())];
}
}
// generate plaintext which is amenable to LZ encoding
export function comprLZGenerate(): string {
const length = 50 + Math.floor(25 * (Math.random() + Math.random()));
let plain = "";
while (plain.length < length) {
if (Math.random() < 0.8) {
plain += comprGenChar();
} else {
const length = 1 + Math.floor(9 * Math.random());
const offset = 1 + Math.floor(9 * Math.random());
if (offset > plain.length) {
continue;
}
for (let i = 0; i < length; ++i) {
plain += plain[plain.length - offset];
}
}
}
return plain.substring(0, length);
}
// compress plaintest string
export function comprLZEncode(plain: string): string {
// for state[i][j]:
// if i is 0, we're adding a literal of length j
// else, we're adding a backreference of offset i and length j
let cur_state: (string | null)[][] = Array.from(Array(10), () => Array(10).fill(null));
let new_state: (string | null)[][] = Array.from(Array(10), () => Array(10));
function set(state: (string | null)[][], i: number, j: number, str: string): void {
const current = state[i][j];
if (current == null || str.length < current.length) {
state[i][j] = str;
} else if (str.length === current.length && Math.random() < 0.5) {
// if two strings are the same length, pick randomly so that
// we generate more possible inputs to Compression II
state[i][j] = str;
}
}
// initial state is a literal of length 1
cur_state[0][1] = "";
for (let i = 1; i < plain.length; ++i) {
for (const row of new_state) {
row.fill(null);
}
const c = plain[i];
// handle literals
for (let length = 1; length <= 9; ++length) {
const string = cur_state[0][length];
if (string == null) {
continue;
}
if (length < 9) {
// extend current literal
set(new_state, 0, length + 1, string);
} else {
// start new literal
set(new_state, 0, 1, string + "9" + plain.substring(i - 9, i) + "0");
}
for (let offset = 1; offset <= Math.min(9, i); ++offset) {
if (plain[i - offset] === c) {
// start new backreference
set(new_state, offset, 1, string + length + plain.substring(i - length, i));
}
}
}
// handle backreferences
for (let offset = 1; offset <= 9; ++offset) {
for (let length = 1; length <= 9; ++length) {
const string = cur_state[offset][length];
if (string == null) {
continue;
}
if (plain[i - offset] === c) {
if (length < 9) {
// extend current backreference
set(new_state, offset, length + 1, string);
} else {
// start new backreference
set(new_state, offset, 1, string + "9" + offset + "0");
}
}
// start new literal
set(new_state, 0, 1, string + length + offset);
}
}
const tmp_state = new_state;
new_state = cur_state;
cur_state = tmp_state;
}
let result = null;
for (let len = 1; len <= 9; ++len) {
let string = cur_state[0][len];
if (string == null) {
continue;
}
string += len + plain.substring(plain.length - len, plain.length);
if (result == null || string.length < result.length) {
result = string;
} else if (string.length == result.length && Math.random() < 0.5) {
result = string;
}
}
for (let offset = 1; offset <= 9; ++offset) {
for (let len = 1; len <= 9; ++len) {
let string = cur_state[offset][len];
if (string == null) {
continue;
}
string += len + "" + offset;
if (result == null || string.length < result.length) {
result = string;
} else if (string.length == result.length && Math.random() < 0.5) {
result = string;
}
}
}
return result ?? "";
}
// decompress LZ-compressed string, or return null if input is invalid
export function comprLZDecode(compr: string): string | null {
let plain = "";
for (let i = 0; i < compr.length; ) {
const literal_length = compr.charCodeAt(i) - 0x30;
if (literal_length < 0 || literal_length > 9 || i + 1 + literal_length > compr.length) {
return null;
}
plain += compr.substring(i + 1, i + 1 + literal_length);
i += 1 + literal_length;
if (i >= compr.length) {
break;
}
const backref_length = compr.charCodeAt(i) - 0x30;
if (backref_length < 0 || backref_length > 9) {
return null;
} else if (backref_length === 0) {
++i;
} else {
if (i + 1 >= compr.length) {
return null;
}
const backref_offset = compr.charCodeAt(i + 1) - 0x30;
if ((backref_length > 0 && (backref_offset < 1 || backref_offset > 9)) || backref_offset > plain.length) {
return null;
}
for (let j = 0; j < backref_length; ++j) {
plain += plain[plain.length - backref_offset];
}
i += 2;
}
}
return plain;
}