mirror of
https://github.com/bitburner-official/bitburner-src.git
synced 2024-11-11 10:13:52 +01:00
re-implement HammingEncode/Decode added HammingEncodeProperly
to generate valid hamming codes for "HammingCodes: Encoded Binary to Integer"
This commit is contained in:
parent
4b37603ea5
commit
aa321e3305
@ -1,97 +1,156 @@
|
|||||||
// by Discord: H3draut3r#6722, feel free to ask me any questions. i probably don't know the answer 🤣
|
export function HammingEncode(data: number): string {
|
||||||
export function HammingEncode(value: number): string {
|
|
||||||
// encoding following Hammings rule
|
|
||||||
function HammingSumOfParity(_lengthOfDBits: number): number {
|
|
||||||
// will calculate the needed amount of parityBits 'without' the "overall"-Parity (that math took me 4 Days to get it working)
|
|
||||||
return _lengthOfDBits < 3 || _lengthOfDBits == 0 // oh and of course using ternary operators, it's a pretty neat function
|
|
||||||
? _lengthOfDBits == 0
|
|
||||||
? 0
|
|
||||||
: _lengthOfDBits + 1
|
|
||||||
: // the following math will only work, if the length is greater equal 3, otherwise it's "kind of" broken :D
|
|
||||||
Math.ceil(Math.log2(_lengthOfDBits * 2)) <=
|
|
||||||
Math.ceil(Math.log2(1 + _lengthOfDBits + Math.ceil(Math.log2(_lengthOfDBits))))
|
|
||||||
? Math.ceil(Math.log2(_lengthOfDBits) + 1)
|
|
||||||
: Math.ceil(Math.log2(_lengthOfDBits));
|
|
||||||
}
|
|
||||||
const _data = value.toString(2).split(""); // first, change into binary string, then create array with 1 bit per index
|
|
||||||
const _sumParity: number = HammingSumOfParity(_data.length); // get the sum of needed parity bits (for later use in encoding)
|
|
||||||
const count = (arr: Array<string>, val: string): number =>
|
|
||||||
arr.reduce((a: number, v: string) => (v === val ? a + 1 : a), 0);
|
|
||||||
// function count for specific entries in the array, for later use
|
|
||||||
|
|
||||||
const _build = ["x", "x", ..._data.splice(0, 1)]; // init the "pre-build"
|
const enc: Array<number> = [0];
|
||||||
for (let i = 2; i < _sumParity; i++) {
|
const data_bits: Array<any> = data.toString(2).split("").reverse();
|
||||||
// add new paritybits and the corresponding data bits (pre-building array)
|
|
||||||
_build.push("x", ..._data.splice(0, Math.pow(2, i) - 1));
|
data_bits.forEach((e, i, a) => {
|
||||||
|
a[i] = parseInt(e);
|
||||||
|
});
|
||||||
|
|
||||||
|
let k = data_bits.length;
|
||||||
|
|
||||||
|
/* NOTE: writing the data like this flips the endianness, this is what the
|
||||||
|
* original implementation by Hedrauta did so I'm keeping it like it was. */
|
||||||
|
for(let i = 1; k > 0; i++) {
|
||||||
|
if((i & (i - 1)) != 0) {
|
||||||
|
enc[i] = data_bits[--k];
|
||||||
|
} else {
|
||||||
|
enc[i] = 0;
|
||||||
}
|
}
|
||||||
// now the "calculation"... get the paritybits ('x') working
|
|
||||||
for (const index of _build.reduce(function (a: Array<number>, e: string, i: number) {
|
|
||||||
if (e == "x") a.push(i);
|
|
||||||
return a;
|
|
||||||
}, [])) {
|
|
||||||
// that reduce will result in an array of index numbers where the "x" is placed
|
|
||||||
const _tempcount = index + 1; // set the "stepsize" for the parityBit
|
|
||||||
const _temparray = []; // temporary array to store the extracted bits
|
|
||||||
const _tempdata = [..._build]; // only work with a copy of the _build
|
|
||||||
while (_tempdata[index] !== undefined) {
|
|
||||||
// as long as there are bits on the starting index, do "cut"
|
|
||||||
const _temp: Array<string> = _tempdata.splice(index, _tempcount * 2); // cut stepsize*2 bits, then...
|
|
||||||
_temparray.push(..._temp.splice(0, _tempcount)); // ... cut the result again and keep the first half
|
|
||||||
}
|
}
|
||||||
_temparray.splice(0, 1); // remove first bit, which is the parity one
|
|
||||||
_build[index] = (count(_temparray, "1") % 2).toString(); // count with remainder of 2 and"toString" to store the parityBit
|
let parity: any = 0;
|
||||||
} // parity done, now the "overall"-parity is set
|
|
||||||
_build.unshift((count(_build, "1") % 2).toString()); // has to be done as last element
|
/* Figure out the subsection parities */
|
||||||
return _build.join(""); // return the _build as string
|
for(let i = 0; i < enc.length; i++) {
|
||||||
|
if(enc[i]) {
|
||||||
|
parity ^= i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
parity = parity.toString(2).split("").reverse();
|
||||||
|
parity.forEach((e: any, i: any , a: any) => {
|
||||||
|
a[i] = parseInt(e);
|
||||||
|
});
|
||||||
|
|
||||||
|
/* Set the parity bits accordingly */
|
||||||
|
for(let i = 0; i < parity.length; i++) {
|
||||||
|
enc[2 ** i] = parity[i] ? 1 : 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
parity = 0;
|
||||||
|
/* Figure out the overall parity for the entire block */
|
||||||
|
for(let i = 0; i < enc.length; i++) {
|
||||||
|
if(enc[i]) {
|
||||||
|
parity++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Finally set the overall parity bit */
|
||||||
|
enc[0] = parity % 2 == 0 ? 0 : 1;
|
||||||
|
|
||||||
|
return enc.join("");
|
||||||
}
|
}
|
||||||
|
|
||||||
export function HammingDecode(_data: string): number {
|
export function HammingEncodeProperly(data: number): string {
|
||||||
//check for altered bit and decode
|
/* How many bits do we need?
|
||||||
const _build = _data.split(""); // ye, an array for working, again
|
* n = 2^m
|
||||||
const _testArray = []; //for the "truthtable". if any is false, the data has an altered bit, will check for and fix it
|
* k = 2^m - m - 1
|
||||||
const _sumParity = Math.ceil(Math.log2(_data.length)); // sum of parity for later use
|
* where k is the number of data bits, m the number
|
||||||
const count = (arr: Array<string>, val: string): number =>
|
* of parity bits and n the number of total bits. */
|
||||||
arr.reduce((a: number, v: string) => (v === val ? a + 1 : a), 0);
|
|
||||||
// the count.... again ;)
|
|
||||||
|
|
||||||
let _overallParity = _build.splice(0, 1).join(""); // store first index, for checking in next step and fix the _build properly later on
|
let m = 1;
|
||||||
_testArray.push(_overallParity == (count(_build, "1") % 2).toString() ? true : false); // first check with the overall parity bit
|
|
||||||
for (let i = 0; i < _sumParity; i++) {
|
while((2 ** ((2 ** m) - m - 1)) < data) {
|
||||||
// for the rest of the remaining parity bits we also "check"
|
m++;
|
||||||
const _tempIndex = Math.pow(2, i) - 1; // get the parityBits Index
|
|
||||||
const _tempStep = _tempIndex + 1; // set the stepsize
|
|
||||||
const _tempData = [..._build]; // get a "copy" of the build-data for working
|
|
||||||
const _tempArray = []; // init empty array for "testing"
|
|
||||||
while (_tempData[_tempIndex] != undefined) {
|
|
||||||
// extract from the copied data until the "starting" index is undefined
|
|
||||||
const _temp = [..._tempData.splice(_tempIndex, _tempStep * 2)]; // extract 2*stepsize
|
|
||||||
_tempArray.push(..._temp.splice(0, _tempStep)); // and cut again for keeping first half
|
|
||||||
}
|
}
|
||||||
const _tempParity = _tempArray.shift(); // and again save the first index separated for checking with the rest of the data
|
|
||||||
_testArray.push(_tempParity == (count(_tempArray, "1") % 2).toString() ? true : false);
|
const n: number = (2 ** m);
|
||||||
// is the _tempParity the calculated data? push answer into the 'truthtable'
|
const k: number = (2 ** m) - m - 1;
|
||||||
|
|
||||||
|
const enc: Array<number> = [0];
|
||||||
|
const data_bits: Array<any> = data.toString(2).split("").reverse();
|
||||||
|
|
||||||
|
data_bits.forEach((e, i, a) => {
|
||||||
|
a[i] = parseInt(e);
|
||||||
|
});
|
||||||
|
|
||||||
|
/* Flip endianness as in the original implementation by Hedrauta
|
||||||
|
* and write the data back to front
|
||||||
|
* XXX why do we do this? */
|
||||||
|
for(let i = 1, j = k; i < n; i++) {
|
||||||
|
if((i & (i - 1)) != 0) {
|
||||||
|
enc[i] = data_bits[--j] ? data_bits[j] : 0;
|
||||||
}
|
}
|
||||||
let _fixIndex = 0; // init the "fixing" index and start with 0
|
|
||||||
for (let i = 1; i < _sumParity + 1; i++) {
|
|
||||||
// simple binary adding for every boolean in the _testArray, starting from 2nd index of it
|
|
||||||
_fixIndex += _testArray[i] ? 0 : Math.pow(2, i) / 2;
|
|
||||||
}
|
}
|
||||||
_build.unshift(_overallParity); // now we need the "overall" parity back in it's place
|
|
||||||
// try fix the actual encoded binary string if there is an error
|
let parity: any = 0;
|
||||||
if (_fixIndex > 0 && _testArray[0] == false) {
|
|
||||||
// if the overall is false and the sum of calculated values is greater equal 0, fix the corresponding hamming-bit
|
/* Figure out the subsection parities */
|
||||||
_build[_fixIndex] = _build[_fixIndex] == "0" ? "1" : "0";
|
for(let i = 0; i < n; i++) {
|
||||||
} else if (_testArray[0] == false) {
|
if(enc[i]) {
|
||||||
// otherwise, if the the overall_parity is the only wrong, fix that one
|
parity ^= i;
|
||||||
_overallParity = _overallParity == "0" ? "1" : "0";
|
|
||||||
} else if (_testArray[0] == true && _testArray.some((truth) => truth == false)) {
|
|
||||||
return 0; // uhm, there's some strange going on... 2 bits are altered? How? This should not happen 👀
|
|
||||||
}
|
}
|
||||||
// oof.. halfway through... we fixed an possible altered bit, now "extract" the parity-bits from the _build
|
|
||||||
for (let i = _sumParity; i >= 0; i--) {
|
|
||||||
// start from the last parity down the 2nd index one
|
|
||||||
_build.splice(Math.pow(2, i), 1);
|
|
||||||
}
|
}
|
||||||
_build.splice(0, 1); // remove the overall parity bit and we have our binary value
|
|
||||||
return parseInt(_build.join(""), 2); // parse the integer with redux 2 and we're done!
|
parity = parity.toString(2).split("").reverse();
|
||||||
|
parity.forEach((e: any, i: any , a: any) => {
|
||||||
|
a[i] = parseInt(e);
|
||||||
|
});
|
||||||
|
|
||||||
|
/* Set the parity bits accordingly */
|
||||||
|
for(let i = 0; i < m; i++) {
|
||||||
|
enc[2 ** i] = parity[i] ? 1 : 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
parity = 0;
|
||||||
|
/* Figure out the overall parity for the entire block */
|
||||||
|
for(let i = 0; i < n; i++) {
|
||||||
|
if(enc[i]) {
|
||||||
|
parity++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Finally set the overall parity bit */
|
||||||
|
enc[0] = parity % 2 == 0 ? 0 : 1;
|
||||||
|
|
||||||
|
return enc.join("");
|
||||||
|
}
|
||||||
|
|
||||||
|
export function HammingDecode(data: string): number {
|
||||||
|
let err = 0;
|
||||||
|
const bits: Array<number> = [];
|
||||||
|
|
||||||
|
/* TODO why not just work with an array of digits from the start? */
|
||||||
|
for(const i in data.split("")) {
|
||||||
|
const bit = parseInt(data[i]);
|
||||||
|
bits[i] = bit;
|
||||||
|
|
||||||
|
if(bit) {
|
||||||
|
err ^= +i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* If err != 0 then it spells out the index of the bit that was flipped */
|
||||||
|
if(err) {
|
||||||
|
/* Flip to correct */
|
||||||
|
bits[err] = bits[err] ? 0 : 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Now we have to read the message, bit 0 is unused (it's the overall parity bit
|
||||||
|
* which we don't care about). Each bit at an index that is a power of 2 is
|
||||||
|
* a parity bit and not part of the actual message. */
|
||||||
|
|
||||||
|
let ans = '';
|
||||||
|
|
||||||
|
for(let i = 1; i < bits.length; i++) {
|
||||||
|
/* i is not a power of two so it's not a parity bit */
|
||||||
|
if((i & (i - 1)) != 0) {
|
||||||
|
ans += bits[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* TODO to avoid ambiguity about endianness why not let the player return the extracted (and corrected)
|
||||||
|
* data bits, rather than guessing at how to convert it to a decimal string? */
|
||||||
|
return parseInt(ans, 2);
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user