#! /usr/bin/python3 from picamera.array import PiRGBArray from picamera import PiCamera import time import cv2 import imutils import numpy as np import requests protopath = "MobileNetSSD_deploy.prototxt" modelpath = "MobileNetSSD_deploy.caffemodel" detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath) person_counter = 0 CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] # initialize the camera and grab a reference to the raw camera capture camera = PiCamera() rawCapture = PiRGBArray(camera) # allow the camera to warmup time.sleep(0.1) # grab an image from the camera while True: camera.capture(rawCapture, format="bgr") image = rawCapture.array image = imutils.resize(image, width=1024, height=1024) (H, W) = image.shape[:2] blob = cv2.dnn.blobFromImage(image, 0.007843, (W, H), 127.5) detector.setInput(blob) person_detections = detector.forward() for i in np.arange(0, person_detections.shape[2]): confidence = person_detections[0, 0, i, 2] if confidence > 0.2: idx = int(person_detections[0, 0, i, 1]) if CLASSES[idx] == "person": person_counter += 1 r = requests.post("http://127.0.0.1:8000/update_sensor", json={"name": "pocet ludi", "value": str(person_counter)}) time.sleep(60)