85 lines
3.6 KiB
Python
85 lines
3.6 KiB
Python
|
import cv2
|
||
|
import mediapipe as mp
|
||
|
import time
|
||
|
import math
|
||
|
import threading
|
||
|
import pyautogui
|
||
|
|
||
|
cap = cv2.VideoCapture(0)
|
||
|
pyautogui.PAUSE = 0.01
|
||
|
mpHands = mp.solutions.hands
|
||
|
hands = mpHands.Hands(max_num_hands=1, min_tracking_confidence=0.95, min_detection_confidence=0.90)
|
||
|
mpDraw = mp.solutions.drawing_utils
|
||
|
mov_dis = 0.2379
|
||
|
click_dis = 0.2823
|
||
|
sensitivity = 3.5
|
||
|
|
||
|
testing8_12 = []
|
||
|
testing0_5 = []
|
||
|
|
||
|
testing3_5 = []
|
||
|
|
||
|
def get_distance(first, second, height, width):
|
||
|
dist_x = (results.multi_hand_landmarks[0].landmark[first].x - results.multi_hand_landmarks[0].landmark[
|
||
|
second].x) * width
|
||
|
dist_y = (results.multi_hand_landmarks[0].landmark[first].y - results.multi_hand_landmarks[0].landmark[
|
||
|
second].y) * height
|
||
|
return math.sqrt(abs(dist_x ** 2 + dist_y ** 2))
|
||
|
|
||
|
def dist(point1, point2, pointa, pointb, pointc, pointd):
|
||
|
dis12 = get_distance(point1, point2, h, w)
|
||
|
distab = get_distance(pointa, pointb, h, w)
|
||
|
distcd = get_distance(pointc, pointd, h, w)
|
||
|
testing8_12.append(dis12)
|
||
|
testing0_5.append(distab)
|
||
|
testing3_5.append(distcd)
|
||
|
print(f"8-12: {round(sum(testing8_12)/len(testing8_12), 2)} | 0-5 {round(sum(testing0_5)/len(testing0_5), 2)} | 3-5 {round(sum(testing3_5)/len(testing3_5), 2)}")
|
||
|
|
||
|
|
||
|
|
||
|
x, y = None, None
|
||
|
click = False
|
||
|
|
||
|
while True:
|
||
|
success, img = cap.read()
|
||
|
h, w, c = img.shape
|
||
|
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||
|
results = hands.process(imgRGB)
|
||
|
if results.multi_hand_landmarks:
|
||
|
dist_palm = round(get_distance(0, 5, h, w))
|
||
|
if not x and not y:
|
||
|
x, y = results.multi_hand_landmarks[0].landmark[4].x * w, results.multi_hand_landmarks[0].landmark[4].y * h
|
||
|
dis_1 = get_distance(12, 8, h, w)
|
||
|
cv2.putText(img, f"""MOVE: {round(dis_1)}/{round(mov_dis * dist_palm, 2)} - {"true" if dis_1 < mov_dis * dist_palm else "false"}""", (0, 15),
|
||
|
cv2.FONT_HERSHEY_PLAIN, 1.5, (255, 0, 255), thickness=2)
|
||
|
cv2.putText(img, f"""CLICK: {round(get_distance(5, 3, h, w))}/{round(click_dis * dist_palm, 2)} - {"true" if get_distance(5, 3, h, w) < click_dis * dist_palm else "false"}""", (0, 40),
|
||
|
cv2.FONT_HERSHEY_PLAIN, 1.5, (255, 0, 255), thickness=2)
|
||
|
cv2.putText(img,
|
||
|
f"""DRAG: {"true" if dis_1 < mov_dis * dist_palm and get_distance(5, 3, h, w) < click_dis * dist_palm else "false"}""",
|
||
|
(0, 65),
|
||
|
cv2.FONT_HERSHEY_PLAIN, 1.5, (255, 0, 255), thickness=2)
|
||
|
for handLms in results.multi_hand_landmarks:
|
||
|
mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)
|
||
|
if dis_1 < mov_dis * dist_palm and get_distance(5, 3, h, w) < click_dis * dist_palm:
|
||
|
pyautogui.mouseDown()
|
||
|
pyautogui.moveRel(-(results.multi_hand_landmarks[0].landmark[8].x * w - x) * sensitivity,
|
||
|
(results.multi_hand_landmarks[0].landmark[8].y * h - y) * sensitivity, duration=0.001)
|
||
|
elif dis_1 < mov_dis * dist_palm:
|
||
|
pyautogui.mouseUp()
|
||
|
pyautogui.moveRel(-(results.multi_hand_landmarks[0].landmark[8].x * w - x) * sensitivity,
|
||
|
(results.multi_hand_landmarks[0].landmark[8].y * h - y) * sensitivity, duration=0.001)
|
||
|
|
||
|
elif get_distance(5, 3, h, w) < click_dis * dist_palm and not click:
|
||
|
pyautogui.mouseUp()
|
||
|
pyautogui.click()
|
||
|
click = True
|
||
|
else:
|
||
|
pyautogui.mouseUp()
|
||
|
click = False
|
||
|
x, y = results.multi_hand_landmarks[0].landmark[8].x * w, results.multi_hand_landmarks[0].landmark[8].y * h
|
||
|
dist(8, 12, 0, 5, 3, 5)
|
||
|
else:
|
||
|
x, y = None, None
|
||
|
cv2.imshow("Image", img)
|
||
|
cv2.waitKey(1)
|