forked from Mirrorlandia_minetest/irrlicht
Optimization in quaternion::rotationFromTo from Robert Eisele
Turns out we can avoid a square root and a division. Patch comes even with proof: https://raw.org/proof/quaternion-from-two-vectors (I also tested it a while and indeed got same results) git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6511 dfc29bdd-3216-0410-991c-e03cc46cb475
This commit is contained in:
parent
2c086e5fdc
commit
fbdc4ee8d5
@ -720,6 +720,8 @@ inline core::quaternion& quaternion::makeIdentity()
|
||||
inline core::quaternion& quaternion::rotationFromTo(const vector3df& from, const vector3df& to)
|
||||
{
|
||||
// Based on Stan Melax's article in Game Programming Gems
|
||||
// Optimized by Robert Eisele: https://raw.org/proof/quaternion-from-two-vectors
|
||||
|
||||
// Copy, since cannot modify local
|
||||
vector3df v0 = from;
|
||||
vector3df v1 = to;
|
||||
@ -744,10 +746,8 @@ inline core::quaternion& quaternion::rotationFromTo(const vector3df& from, const
|
||||
return set(axis.X, axis.Y, axis.Z, 0).normalize();
|
||||
}
|
||||
|
||||
const f32 s = sqrtf( (1+d)*2 ); // optimize inv_sqrt
|
||||
const f32 invs = 1.f / s;
|
||||
const vector3df c = v0.crossProduct(v1)*invs;
|
||||
return set(c.X, c.Y, c.Z, s * 0.5f).normalize();
|
||||
const vector3df c = v0.crossProduct(v1);
|
||||
return set(c.X, c.Y, c.Z, 1 + d).normalize();
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user