2011-02-05 13:56:01 +01:00
|
|
|
/*
|
2014-10-28 02:17:07 +01:00
|
|
|
* Minetest
|
|
|
|
* Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
|
|
|
|
* Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without modification, are
|
|
|
|
* permitted provided that the following conditions are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
|
|
* conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
|
|
* of conditions and the following disclaimer in the documentation and/or other materials
|
|
|
|
* provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
|
|
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
2011-02-05 13:56:01 +01:00
|
|
|
|
2017-08-19 11:30:46 +02:00
|
|
|
#include <cmath>
|
2011-02-05 13:56:01 +01:00
|
|
|
#include "noise.h"
|
2011-02-08 09:11:26 +01:00
|
|
|
#include <iostream>
|
2017-08-19 11:30:46 +02:00
|
|
|
#include <cstring> // memset
|
2011-04-26 14:38:42 +02:00
|
|
|
#include "debug.h"
|
2012-11-26 03:16:48 +01:00
|
|
|
#include "util/numeric.h"
|
2014-12-08 03:57:12 +01:00
|
|
|
#include "util/string.h"
|
2014-11-29 22:50:18 +01:00
|
|
|
#include "exceptions.h"
|
2011-02-05 13:56:01 +01:00
|
|
|
|
2012-11-26 03:16:48 +01:00
|
|
|
#define NOISE_MAGIC_X 1619
|
|
|
|
#define NOISE_MAGIC_Y 31337
|
|
|
|
#define NOISE_MAGIC_Z 52591
|
fix integer overflow in mapgen (#11641)
* fix integer overflow in mapgen
Some calculations involving the magic seed had overflow because the result of an intermediate arithmetic step could not fit in an s32. By making the magic seed unsigned, the other operand in the equation will be cast to unsigned, and possibly other operands or intermediate operands. This will result in unexpected behavior if an operand is negative, which is technically possible, but logically should not happen.
* comment noise2d bitshift
While working through the code I was momentarily concerned that the right bitshift in noise2d could fill ones in some cases. It turns out that with signed integers, this is indeed true, but this one is shifting an unsigned integer, so the behavior is as expected. I put a comment here to clarify this, in case someone else wonders the same thing down the line.
* noise2d and noise3d unittests
I have added 3 tests each for noise2d and noise3d, testing all zero inputs, a very large seed (case which caused UB in the old implementation) and some fun primes I picked for no particular reason. This should be sufficient to demonstrate that the behavior of the new implementation has not changed. I used uniform initialization because it is a good feature of C++11. Please do not explode.
* uncomment the noise2d bitshift
This reverts commit 583b77ee9f1ad6bb77340ebb5ba51eb9a88ff51c. It's a
well-defined language semantic; it doesn't need to be commented.
* code cleanliness
2022-06-04 02:51:58 +02:00
|
|
|
// Unsigned magic seed prevents undefined behavior.
|
|
|
|
#define NOISE_MAGIC_SEED 1013U
|
2011-02-05 13:56:01 +01:00
|
|
|
|
2014-12-08 03:57:12 +01:00
|
|
|
FlagDesc flagdesc_noiseparams[] = {
|
|
|
|
{"defaults", NOISE_FLAG_DEFAULTS},
|
|
|
|
{"eased", NOISE_FLAG_EASED},
|
|
|
|
{"absvalue", NOISE_FLAG_ABSVALUE},
|
|
|
|
{"pointbuffer", NOISE_FLAG_POINTBUFFER},
|
|
|
|
{"simplex", NOISE_FLAG_SIMPLEX},
|
|
|
|
{NULL, 0}
|
|
|
|
};
|
2012-11-26 03:16:48 +01:00
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
2015-03-22 05:01:46 +01:00
|
|
|
PcgRandom::PcgRandom(u64 state, u64 seq)
|
|
|
|
{
|
|
|
|
seed(state, seq);
|
|
|
|
}
|
|
|
|
|
|
|
|
void PcgRandom::seed(u64 state, u64 seq)
|
|
|
|
{
|
|
|
|
m_state = 0U;
|
|
|
|
m_inc = (seq << 1u) | 1u;
|
|
|
|
next();
|
|
|
|
m_state += state;
|
|
|
|
next();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
u32 PcgRandom::next()
|
|
|
|
{
|
|
|
|
u64 oldstate = m_state;
|
|
|
|
m_state = oldstate * 6364136223846793005ULL + m_inc;
|
|
|
|
|
|
|
|
u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
|
|
|
|
u32 rot = oldstate >> 59u;
|
|
|
|
return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
u32 PcgRandom::range(u32 bound)
|
|
|
|
{
|
2015-08-11 19:07:56 +02:00
|
|
|
// If the bound is 0, we cover the whole RNG's range
|
|
|
|
if (bound == 0)
|
|
|
|
return next();
|
2016-06-04 08:16:06 +02:00
|
|
|
|
2015-03-22 05:01:46 +01:00
|
|
|
/*
|
2016-06-04 08:16:06 +02:00
|
|
|
This is an optimization of the expression:
|
|
|
|
0x100000000ull % bound
|
|
|
|
since 64-bit modulo operations typically much slower than 32.
|
2015-03-22 05:01:46 +01:00
|
|
|
*/
|
2015-12-05 14:00:11 +01:00
|
|
|
u32 threshold = -bound % bound;
|
2015-03-22 05:01:46 +01:00
|
|
|
u32 r;
|
|
|
|
|
2016-06-04 08:16:06 +02:00
|
|
|
/*
|
|
|
|
If the bound is not a multiple of the RNG's range, it may cause bias,
|
|
|
|
e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2.
|
|
|
|
Using rand() % 3, the number 0 would be twice as likely to appear.
|
|
|
|
With a very large RNG range, the effect becomes less prevalent but
|
|
|
|
still present.
|
|
|
|
|
|
|
|
This can be solved by modifying the range of the RNG to become a
|
|
|
|
multiple of bound by dropping values above the a threshold.
|
|
|
|
|
|
|
|
In our example, threshold == 4 % 3 == 1, so reject values < 1
|
|
|
|
(that is, 0), thus making the range == 3 with no bias.
|
|
|
|
|
|
|
|
This loop may look dangerous, but will always terminate due to the
|
|
|
|
RNG's property of uniformity.
|
|
|
|
*/
|
2015-12-05 14:00:11 +01:00
|
|
|
while ((r = next()) < threshold)
|
2015-03-22 07:58:47 +01:00
|
|
|
;
|
2015-03-22 05:01:46 +01:00
|
|
|
|
|
|
|
return r % bound;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
s32 PcgRandom::range(s32 min, s32 max)
|
|
|
|
{
|
2015-04-27 07:24:37 +02:00
|
|
|
if (max < min)
|
|
|
|
throw PrngException("Invalid range (max < min)");
|
|
|
|
|
2017-07-29 19:01:14 +02:00
|
|
|
// We have to cast to s64 because otherwise this could overflow,
|
|
|
|
// and signed overflow is undefined behavior.
|
|
|
|
u32 bound = (s64)max - (s64)min + 1;
|
2015-03-22 05:01:46 +01:00
|
|
|
return range(bound) + min;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void PcgRandom::bytes(void *out, size_t len)
|
|
|
|
{
|
|
|
|
u8 *outb = (u8 *)out;
|
2015-03-24 02:07:32 +01:00
|
|
|
int bytes_left = 0;
|
|
|
|
u32 r;
|
2015-03-22 05:01:46 +01:00
|
|
|
|
2015-03-24 02:07:32 +01:00
|
|
|
while (len--) {
|
|
|
|
if (bytes_left == 0) {
|
|
|
|
bytes_left = sizeof(u32);
|
|
|
|
r = next();
|
2015-03-22 05:01:46 +01:00
|
|
|
}
|
|
|
|
|
2015-03-24 02:07:32 +01:00
|
|
|
*outb = r & 0xFF;
|
|
|
|
outb++;
|
|
|
|
bytes_left--;
|
2015-07-08 17:53:02 +02:00
|
|
|
r >>= CHAR_BIT;
|
2015-03-22 05:01:46 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials)
|
|
|
|
{
|
2015-03-22 07:58:47 +01:00
|
|
|
s32 accum = 0;
|
2015-03-22 05:01:46 +01:00
|
|
|
for (int i = 0; i != num_trials; i++)
|
|
|
|
accum += range(min, max);
|
2015-04-29 19:20:01 +02:00
|
|
|
return myround((float)accum / num_trials);
|
2015-03-22 05:01:46 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2016-06-04 07:35:37 +02:00
|
|
|
float noise2d(int x, int y, s32 seed)
|
2014-10-27 07:02:38 +01:00
|
|
|
{
|
2015-11-01 17:16:18 +01:00
|
|
|
unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
|
2012-11-26 03:16:48 +01:00
|
|
|
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
|
|
|
|
n = (n >> 13) ^ n;
|
|
|
|
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
|
2015-11-01 17:16:18 +01:00
|
|
|
return 1.f - (float)(int)n / 0x40000000;
|
2011-02-05 13:56:01 +01:00
|
|
|
}
|
2012-11-26 03:16:48 +01:00
|
|
|
|
|
|
|
|
2016-06-04 07:35:37 +02:00
|
|
|
float noise3d(int x, int y, int z, s32 seed)
|
2014-10-27 07:02:38 +01:00
|
|
|
{
|
2015-11-01 17:16:18 +01:00
|
|
|
unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
|
2012-11-26 03:16:48 +01:00
|
|
|
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
|
|
|
|
n = (n >> 13) ^ n;
|
|
|
|
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
|
2015-11-01 17:16:18 +01:00
|
|
|
return 1.f - (float)(int)n / 0x40000000;
|
2011-02-05 13:56:01 +01:00
|
|
|
}
|
2012-11-26 03:16:48 +01:00
|
|
|
|
|
|
|
|
2014-12-08 09:25:14 +01:00
|
|
|
inline float dotProduct(float vx, float vy, float wx, float wy)
|
2014-10-27 07:02:38 +01:00
|
|
|
{
|
2012-11-26 03:16:48 +01:00
|
|
|
return vx * wx + vy * wy;
|
2011-02-05 13:56:01 +01:00
|
|
|
}
|
2012-11-26 03:16:48 +01:00
|
|
|
|
|
|
|
|
2014-10-27 07:02:38 +01:00
|
|
|
inline float linearInterpolation(float v0, float v1, float t)
|
|
|
|
{
|
2014-12-08 03:57:12 +01:00
|
|
|
return v0 + (v1 - v0) * t;
|
2011-02-05 13:56:01 +01:00
|
|
|
}
|
|
|
|
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2014-12-08 09:25:14 +01:00
|
|
|
inline float biLinearInterpolation(
|
2014-12-08 03:57:12 +01:00
|
|
|
float v00, float v10,
|
|
|
|
float v01, float v11,
|
2022-06-11 20:01:30 +02:00
|
|
|
float x, float y,
|
|
|
|
bool eased)
|
2014-10-27 07:02:38 +01:00
|
|
|
{
|
2022-06-11 20:01:30 +02:00
|
|
|
// Inlining will optimize this branch out when possible
|
|
|
|
if (eased) {
|
|
|
|
x = easeCurve(x);
|
|
|
|
y = easeCurve(y);
|
|
|
|
}
|
2014-12-08 09:25:14 +01:00
|
|
|
float u = linearInterpolation(v00, v10, x);
|
|
|
|
float v = linearInterpolation(v01, v11, x);
|
|
|
|
return linearInterpolation(u, v, y);
|
2012-11-26 03:16:48 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2022-06-11 20:01:30 +02:00
|
|
|
inline float triLinearInterpolation(
|
2014-12-08 03:57:12 +01:00
|
|
|
float v000, float v100, float v010, float v110,
|
|
|
|
float v001, float v101, float v011, float v111,
|
2022-06-11 20:01:30 +02:00
|
|
|
float x, float y, float z,
|
|
|
|
bool eased)
|
2014-10-27 07:02:38 +01:00
|
|
|
{
|
2022-06-11 20:01:30 +02:00
|
|
|
// Inlining will optimize this branch out when possible
|
|
|
|
if (eased) {
|
|
|
|
x = easeCurve(x);
|
|
|
|
y = easeCurve(y);
|
|
|
|
z = easeCurve(z);
|
|
|
|
}
|
|
|
|
float u = biLinearInterpolation(v000, v100, v010, v110, x, y, false);
|
|
|
|
float v = biLinearInterpolation(v001, v101, v011, v111, x, y, false);
|
2014-12-08 09:25:14 +01:00
|
|
|
return linearInterpolation(u, v, z);
|
2011-02-26 19:16:47 +01:00
|
|
|
}
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2016-06-04 07:35:37 +02:00
|
|
|
float noise2d_gradient(float x, float y, s32 seed, bool eased)
|
2011-02-26 23:59:56 +01:00
|
|
|
{
|
|
|
|
// Calculate the integer coordinates
|
2012-11-26 03:16:48 +01:00
|
|
|
int x0 = myfloor(x);
|
|
|
|
int y0 = myfloor(y);
|
2011-02-26 23:59:56 +01:00
|
|
|
// Calculate the remaining part of the coordinates
|
2012-11-26 03:16:48 +01:00
|
|
|
float xl = x - (float)x0;
|
|
|
|
float yl = y - (float)y0;
|
|
|
|
// Get values for corners of square
|
|
|
|
float v00 = noise2d(x0, y0, seed);
|
|
|
|
float v10 = noise2d(x0+1, y0, seed);
|
|
|
|
float v01 = noise2d(x0, y0+1, seed);
|
|
|
|
float v11 = noise2d(x0+1, y0+1, seed);
|
2011-02-26 23:59:56 +01:00
|
|
|
// Interpolate
|
2022-06-11 20:01:30 +02:00
|
|
|
return biLinearInterpolation(v00, v10, v01, v11, xl, yl, eased);
|
2011-02-26 23:59:56 +01:00
|
|
|
}
|
2011-02-05 13:56:01 +01:00
|
|
|
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2016-06-04 07:35:37 +02:00
|
|
|
float noise3d_gradient(float x, float y, float z, s32 seed, bool eased)
|
2011-02-26 19:16:47 +01:00
|
|
|
{
|
|
|
|
// Calculate the integer coordinates
|
2012-11-26 03:16:48 +01:00
|
|
|
int x0 = myfloor(x);
|
|
|
|
int y0 = myfloor(y);
|
|
|
|
int z0 = myfloor(z);
|
2011-02-26 19:16:47 +01:00
|
|
|
// Calculate the remaining part of the coordinates
|
2012-11-26 03:16:48 +01:00
|
|
|
float xl = x - (float)x0;
|
|
|
|
float yl = y - (float)y0;
|
|
|
|
float zl = z - (float)z0;
|
2011-02-26 19:16:47 +01:00
|
|
|
// Get values for corners of cube
|
2012-11-26 03:16:48 +01:00
|
|
|
float v000 = noise3d(x0, y0, z0, seed);
|
|
|
|
float v100 = noise3d(x0 + 1, y0, z0, seed);
|
|
|
|
float v010 = noise3d(x0, y0 + 1, z0, seed);
|
|
|
|
float v110 = noise3d(x0 + 1, y0 + 1, z0, seed);
|
|
|
|
float v001 = noise3d(x0, y0, z0 + 1, seed);
|
|
|
|
float v101 = noise3d(x0 + 1, y0, z0 + 1, seed);
|
|
|
|
float v011 = noise3d(x0, y0 + 1, z0 + 1, seed);
|
|
|
|
float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
|
2011-02-26 19:16:47 +01:00
|
|
|
// Interpolate
|
2022-06-11 20:01:30 +02:00
|
|
|
return triLinearInterpolation(
|
2017-08-19 11:30:46 +02:00
|
|
|
v000, v100, v010, v110,
|
|
|
|
v001, v101, v011, v111,
|
2022-06-11 20:01:30 +02:00
|
|
|
xl, yl, zl,
|
|
|
|
eased);
|
2011-02-26 19:16:47 +01:00
|
|
|
}
|
|
|
|
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2016-06-04 07:35:37 +02:00
|
|
|
float noise2d_perlin(float x, float y, s32 seed,
|
2014-12-08 03:57:12 +01:00
|
|
|
int octaves, float persistence, bool eased)
|
2011-02-05 13:56:01 +01:00
|
|
|
{
|
2012-11-26 03:16:48 +01:00
|
|
|
float a = 0;
|
|
|
|
float f = 1.0;
|
|
|
|
float g = 1.0;
|
|
|
|
for (int i = 0; i < octaves; i++)
|
2011-02-05 13:56:01 +01:00
|
|
|
{
|
2014-12-08 03:57:12 +01:00
|
|
|
a += g * noise2d_gradient(x * f, y * f, seed + i, eased);
|
2011-02-05 13:56:01 +01:00
|
|
|
f *= 2.0;
|
|
|
|
g *= persistence;
|
|
|
|
}
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
2012-11-26 03:16:48 +01:00
|
|
|
|
|
|
|
float contour(float v)
|
2011-06-25 03:25:14 +02:00
|
|
|
{
|
2018-04-03 21:58:29 +02:00
|
|
|
v = std::fabs(v);
|
2014-12-08 03:57:12 +01:00
|
|
|
if (v >= 1.0)
|
2011-06-25 03:25:14 +02:00
|
|
|
return 0.0;
|
2014-10-27 07:02:38 +01:00
|
|
|
return (1.0 - v);
|
2011-06-25 03:25:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-12-11 08:53:10 +01:00
|
|
|
///////////////////////// [ New noise ] ////////////////////////////
|
|
|
|
|
|
|
|
|
2021-03-23 15:43:26 +01:00
|
|
|
float NoisePerlin2D(const NoiseParams *np, float x, float y, s32 seed)
|
2014-12-11 08:53:10 +01:00
|
|
|
{
|
|
|
|
float a = 0;
|
|
|
|
float f = 1.0;
|
|
|
|
float g = 1.0;
|
|
|
|
|
|
|
|
x /= np->spread.X;
|
|
|
|
y /= np->spread.Y;
|
|
|
|
seed += np->seed;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < np->octaves; i++) {
|
|
|
|
float noiseval = noise2d_gradient(x * f, y * f, seed + i,
|
|
|
|
np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED));
|
|
|
|
|
|
|
|
if (np->flags & NOISE_FLAG_ABSVALUE)
|
2018-04-03 21:58:29 +02:00
|
|
|
noiseval = std::fabs(noiseval);
|
2014-12-11 08:53:10 +01:00
|
|
|
|
|
|
|
a += g * noiseval;
|
|
|
|
f *= np->lacunarity;
|
|
|
|
g *= np->persist;
|
|
|
|
}
|
|
|
|
|
|
|
|
return np->offset + a * np->scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-03-23 15:43:26 +01:00
|
|
|
float NoisePerlin3D(const NoiseParams *np, float x, float y, float z, s32 seed)
|
2014-12-11 08:53:10 +01:00
|
|
|
{
|
|
|
|
float a = 0;
|
|
|
|
float f = 1.0;
|
|
|
|
float g = 1.0;
|
|
|
|
|
|
|
|
x /= np->spread.X;
|
|
|
|
y /= np->spread.Y;
|
|
|
|
z /= np->spread.Z;
|
|
|
|
seed += np->seed;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < np->octaves; i++) {
|
|
|
|
float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i,
|
|
|
|
np->flags & NOISE_FLAG_EASED);
|
|
|
|
|
|
|
|
if (np->flags & NOISE_FLAG_ABSVALUE)
|
2018-04-03 21:58:29 +02:00
|
|
|
noiseval = std::fabs(noiseval);
|
2014-12-11 08:53:10 +01:00
|
|
|
|
|
|
|
a += g * noiseval;
|
|
|
|
f *= np->lacunarity;
|
|
|
|
g *= np->persist;
|
|
|
|
}
|
|
|
|
|
|
|
|
return np->offset + a * np->scale;
|
|
|
|
}
|
2011-06-25 03:25:14 +02:00
|
|
|
|
2011-04-26 14:38:42 +02:00
|
|
|
|
2021-03-23 15:43:26 +01:00
|
|
|
Noise::Noise(const NoiseParams *np_, s32 seed, u32 sx, u32 sy, u32 sz)
|
2014-10-27 07:02:38 +01:00
|
|
|
{
|
2020-08-01 17:25:33 +02:00
|
|
|
np = *np_;
|
2012-11-26 03:16:48 +01:00
|
|
|
this->seed = seed;
|
|
|
|
this->sx = sx;
|
|
|
|
this->sy = sy;
|
|
|
|
this->sz = sz;
|
2012-12-18 22:45:50 +01:00
|
|
|
|
2014-12-08 09:25:14 +01:00
|
|
|
allocBuffers();
|
2011-04-26 14:38:42 +02:00
|
|
|
}
|
|
|
|
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2014-10-27 07:02:38 +01:00
|
|
|
Noise::~Noise()
|
|
|
|
{
|
2014-12-08 09:25:14 +01:00
|
|
|
delete[] gradient_buf;
|
|
|
|
delete[] persist_buf;
|
|
|
|
delete[] noise_buf;
|
2012-11-26 03:16:48 +01:00
|
|
|
delete[] result;
|
2011-04-26 14:38:42 +02:00
|
|
|
}
|
|
|
|
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2014-12-08 09:25:14 +01:00
|
|
|
void Noise::allocBuffers()
|
2014-10-27 07:02:38 +01:00
|
|
|
{
|
2015-04-20 03:39:10 +02:00
|
|
|
if (sx < 1)
|
|
|
|
sx = 1;
|
|
|
|
if (sy < 1)
|
|
|
|
sy = 1;
|
|
|
|
if (sz < 1)
|
|
|
|
sz = 1;
|
|
|
|
|
2014-12-08 09:25:14 +01:00
|
|
|
this->noise_buf = NULL;
|
2012-12-18 22:45:50 +01:00
|
|
|
resizeNoiseBuf(sz > 1);
|
|
|
|
|
2014-12-08 09:25:14 +01:00
|
|
|
delete[] gradient_buf;
|
|
|
|
delete[] persist_buf;
|
2012-12-18 22:45:50 +01:00
|
|
|
delete[] result;
|
2014-12-08 09:25:14 +01:00
|
|
|
|
2014-11-29 22:50:18 +01:00
|
|
|
try {
|
2014-12-08 09:25:14 +01:00
|
|
|
size_t bufsize = sx * sy * sz;
|
|
|
|
this->persist_buf = NULL;
|
|
|
|
this->gradient_buf = new float[bufsize];
|
|
|
|
this->result = new float[bufsize];
|
2014-11-29 22:50:18 +01:00
|
|
|
} catch (std::bad_alloc &e) {
|
|
|
|
throw InvalidNoiseParamsException();
|
|
|
|
}
|
2012-12-18 22:45:50 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2015-05-15 19:21:23 +02:00
|
|
|
void Noise::setSize(u32 sx, u32 sy, u32 sz)
|
2014-12-08 09:25:14 +01:00
|
|
|
{
|
|
|
|
this->sx = sx;
|
|
|
|
this->sy = sy;
|
|
|
|
this->sz = sz;
|
|
|
|
|
|
|
|
allocBuffers();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-10-27 07:02:38 +01:00
|
|
|
void Noise::setSpreadFactor(v3f spread)
|
|
|
|
{
|
2014-12-10 06:37:09 +01:00
|
|
|
this->np.spread = spread;
|
2012-12-18 22:45:50 +01:00
|
|
|
|
|
|
|
resizeNoiseBuf(sz > 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-10-27 07:02:38 +01:00
|
|
|
void Noise::setOctaves(int octaves)
|
|
|
|
{
|
2014-12-10 06:37:09 +01:00
|
|
|
this->np.octaves = octaves;
|
2012-12-18 22:45:50 +01:00
|
|
|
|
|
|
|
resizeNoiseBuf(sz > 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-10-27 07:02:38 +01:00
|
|
|
void Noise::resizeNoiseBuf(bool is3d)
|
|
|
|
{
|
2020-02-13 00:15:07 +01:00
|
|
|
// Maximum possible spread value factor
|
2015-04-21 18:59:09 +02:00
|
|
|
float ofactor = (np.lacunarity > 1.0) ?
|
|
|
|
pow(np.lacunarity, np.octaves - 1) :
|
|
|
|
np.lacunarity;
|
|
|
|
|
2020-02-13 00:15:07 +01:00
|
|
|
// Noise lattice point count
|
2015-04-21 18:59:09 +02:00
|
|
|
// (int)(sz * spread * ofactor) is # of lattice points crossed due to length
|
|
|
|
float num_noise_points_x = sx * ofactor / np.spread.X;
|
|
|
|
float num_noise_points_y = sy * ofactor / np.spread.Y;
|
|
|
|
float num_noise_points_z = sz * ofactor / np.spread.Z;
|
|
|
|
|
2020-02-13 00:15:07 +01:00
|
|
|
// Protect against obviously invalid parameters
|
2015-04-21 18:59:09 +02:00
|
|
|
if (num_noise_points_x > 1000000000.f ||
|
2020-02-13 00:15:07 +01:00
|
|
|
num_noise_points_y > 1000000000.f ||
|
|
|
|
num_noise_points_z > 1000000000.f)
|
2015-04-21 18:59:09 +02:00
|
|
|
throw InvalidNoiseParamsException();
|
2012-12-18 22:45:50 +01:00
|
|
|
|
2020-02-13 00:15:07 +01:00
|
|
|
// Protect against an octave having a spread < 1, causing broken noise values
|
|
|
|
if (np.spread.X / ofactor < 1.0f ||
|
|
|
|
np.spread.Y / ofactor < 1.0f ||
|
|
|
|
np.spread.Z / ofactor < 1.0f) {
|
|
|
|
errorstream << "A noise parameter has too many octaves: "
|
|
|
|
<< np.octaves << " octaves" << std::endl;
|
|
|
|
throw InvalidNoiseParamsException("A noise parameter has too many octaves");
|
|
|
|
}
|
|
|
|
|
2012-12-18 22:45:50 +01:00
|
|
|
// + 2 for the two initial endpoints
|
|
|
|
// + 1 for potentially crossing a boundary due to offset
|
2018-04-03 21:58:29 +02:00
|
|
|
size_t nlx = (size_t)std::ceil(num_noise_points_x) + 3;
|
|
|
|
size_t nly = (size_t)std::ceil(num_noise_points_y) + 3;
|
|
|
|
size_t nlz = is3d ? (size_t)std::ceil(num_noise_points_z) + 3 : 1;
|
2012-12-18 22:45:50 +01:00
|
|
|
|
2014-12-08 09:25:14 +01:00
|
|
|
delete[] noise_buf;
|
2014-11-29 22:50:18 +01:00
|
|
|
try {
|
2014-12-08 09:25:14 +01:00
|
|
|
noise_buf = new float[nlx * nly * nlz];
|
2014-11-29 22:50:18 +01:00
|
|
|
} catch (std::bad_alloc &e) {
|
|
|
|
throw InvalidNoiseParamsException();
|
|
|
|
}
|
2012-12-18 22:45:50 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2012-11-26 03:16:48 +01:00
|
|
|
/*
|
|
|
|
* NB: This algorithm is not optimal in terms of space complexity. The entire
|
|
|
|
* integer lattice of noise points could be done as 2 lines instead, and for 3D,
|
|
|
|
* 2 lines + 2 planes.
|
|
|
|
* However, this would require the noise calls to be interposed with the
|
|
|
|
* interpolation loops, which may trash the icache, leading to lower overall
|
|
|
|
* performance.
|
|
|
|
* Another optimization that could save half as many noise calls is to carry over
|
|
|
|
* values from the previous noise lattice as midpoints in the new lattice for the
|
|
|
|
* next octave.
|
|
|
|
*/
|
2013-01-29 17:43:06 +01:00
|
|
|
#define idx(x, y) ((y) * nlx + (x))
|
2014-10-27 07:02:38 +01:00
|
|
|
void Noise::gradientMap2D(
|
|
|
|
float x, float y,
|
|
|
|
float step_x, float step_y,
|
2016-06-04 07:35:37 +02:00
|
|
|
s32 seed)
|
2014-10-27 07:02:38 +01:00
|
|
|
{
|
2012-11-26 03:16:48 +01:00
|
|
|
float v00, v01, v10, v11, u, v, orig_u;
|
2015-05-17 06:04:51 +02:00
|
|
|
u32 index, i, j, noisex, noisey;
|
2015-05-17 01:59:53 +02:00
|
|
|
u32 nlx, nly;
|
2015-05-17 06:04:51 +02:00
|
|
|
s32 x0, y0;
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2014-12-14 06:18:31 +01:00
|
|
|
bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED);
|
2018-04-03 21:58:29 +02:00
|
|
|
x0 = std::floor(x);
|
|
|
|
y0 = std::floor(y);
|
2012-11-26 03:16:48 +01:00
|
|
|
u = x - (float)x0;
|
|
|
|
v = y - (float)y0;
|
|
|
|
orig_u = u;
|
|
|
|
|
|
|
|
//calculate noise point lattice
|
2015-05-17 01:59:53 +02:00
|
|
|
nlx = (u32)(u + sx * step_x) + 2;
|
|
|
|
nly = (u32)(v + sy * step_y) + 2;
|
2012-11-26 03:16:48 +01:00
|
|
|
index = 0;
|
|
|
|
for (j = 0; j != nly; j++)
|
|
|
|
for (i = 0; i != nlx; i++)
|
2014-12-08 09:25:14 +01:00
|
|
|
noise_buf[index++] = noise2d(x0 + i, y0 + j, seed);
|
2012-11-26 03:16:48 +01:00
|
|
|
|
|
|
|
//calculate interpolations
|
2013-01-29 17:43:06 +01:00
|
|
|
index = 0;
|
2012-11-26 03:16:48 +01:00
|
|
|
noisey = 0;
|
|
|
|
for (j = 0; j != sy; j++) {
|
2014-12-08 09:25:14 +01:00
|
|
|
v00 = noise_buf[idx(0, noisey)];
|
|
|
|
v10 = noise_buf[idx(1, noisey)];
|
|
|
|
v01 = noise_buf[idx(0, noisey + 1)];
|
|
|
|
v11 = noise_buf[idx(1, noisey + 1)];
|
2012-11-26 03:16:48 +01:00
|
|
|
|
|
|
|
u = orig_u;
|
|
|
|
noisex = 0;
|
|
|
|
for (i = 0; i != sx; i++) {
|
2022-06-11 20:01:30 +02:00
|
|
|
gradient_buf[index++] =
|
|
|
|
biLinearInterpolation(v00, v10, v01, v11, u, v, eased);
|
2014-12-08 09:25:14 +01:00
|
|
|
|
2012-11-26 03:16:48 +01:00
|
|
|
u += step_x;
|
|
|
|
if (u >= 1.0) {
|
|
|
|
u -= 1.0;
|
|
|
|
noisex++;
|
|
|
|
v00 = v10;
|
|
|
|
v01 = v11;
|
2014-12-08 09:25:14 +01:00
|
|
|
v10 = noise_buf[idx(noisex + 1, noisey)];
|
|
|
|
v11 = noise_buf[idx(noisex + 1, noisey + 1)];
|
2012-11-26 03:16:48 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
v += step_y;
|
|
|
|
if (v >= 1.0) {
|
|
|
|
v -= 1.0;
|
|
|
|
noisey++;
|
|
|
|
}
|
2011-06-25 03:25:14 +02:00
|
|
|
}
|
|
|
|
}
|
2013-01-29 17:43:06 +01:00
|
|
|
#undef idx
|
2011-06-25 03:25:14 +02:00
|
|
|
|
|
|
|
|
2013-01-29 17:43:06 +01:00
|
|
|
#define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
|
2014-10-27 07:02:38 +01:00
|
|
|
void Noise::gradientMap3D(
|
|
|
|
float x, float y, float z,
|
|
|
|
float step_x, float step_y, float step_z,
|
2016-06-04 07:35:37 +02:00
|
|
|
s32 seed)
|
2014-10-27 07:02:38 +01:00
|
|
|
{
|
2012-11-26 03:16:48 +01:00
|
|
|
float v000, v010, v100, v110;
|
|
|
|
float v001, v011, v101, v111;
|
2013-01-29 17:43:06 +01:00
|
|
|
float u, v, w, orig_u, orig_v;
|
2015-05-17 06:04:51 +02:00
|
|
|
u32 index, i, j, k, noisex, noisey, noisez;
|
2015-05-17 01:59:53 +02:00
|
|
|
u32 nlx, nly, nlz;
|
2015-05-17 06:04:51 +02:00
|
|
|
s32 x0, y0, z0;
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2022-06-11 20:01:30 +02:00
|
|
|
bool eased = np.flags & NOISE_FLAG_EASED;
|
2014-10-27 07:02:38 +01:00
|
|
|
|
2018-04-03 21:58:29 +02:00
|
|
|
x0 = std::floor(x);
|
|
|
|
y0 = std::floor(y);
|
|
|
|
z0 = std::floor(z);
|
2012-11-26 03:16:48 +01:00
|
|
|
u = x - (float)x0;
|
|
|
|
v = y - (float)y0;
|
|
|
|
w = z - (float)z0;
|
|
|
|
orig_u = u;
|
2013-01-29 17:43:06 +01:00
|
|
|
orig_v = v;
|
2012-11-26 03:16:48 +01:00
|
|
|
|
|
|
|
//calculate noise point lattice
|
2015-05-17 01:59:53 +02:00
|
|
|
nlx = (u32)(u + sx * step_x) + 2;
|
|
|
|
nly = (u32)(v + sy * step_y) + 2;
|
|
|
|
nlz = (u32)(w + sz * step_z) + 2;
|
2012-11-26 03:16:48 +01:00
|
|
|
index = 0;
|
|
|
|
for (k = 0; k != nlz; k++)
|
|
|
|
for (j = 0; j != nly; j++)
|
|
|
|
for (i = 0; i != nlx; i++)
|
2014-12-08 09:25:14 +01:00
|
|
|
noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);
|
2012-11-26 03:16:48 +01:00
|
|
|
|
|
|
|
//calculate interpolations
|
2013-01-29 17:43:06 +01:00
|
|
|
index = 0;
|
2012-11-26 03:16:48 +01:00
|
|
|
noisey = 0;
|
|
|
|
noisez = 0;
|
|
|
|
for (k = 0; k != sz; k++) {
|
2013-01-29 17:43:06 +01:00
|
|
|
v = orig_v;
|
2012-11-26 03:16:48 +01:00
|
|
|
noisey = 0;
|
|
|
|
for (j = 0; j != sy; j++) {
|
2014-12-08 09:25:14 +01:00
|
|
|
v000 = noise_buf[idx(0, noisey, noisez)];
|
|
|
|
v100 = noise_buf[idx(1, noisey, noisez)];
|
|
|
|
v010 = noise_buf[idx(0, noisey + 1, noisez)];
|
|
|
|
v110 = noise_buf[idx(1, noisey + 1, noisez)];
|
|
|
|
v001 = noise_buf[idx(0, noisey, noisez + 1)];
|
|
|
|
v101 = noise_buf[idx(1, noisey, noisez + 1)];
|
|
|
|
v011 = noise_buf[idx(0, noisey + 1, noisez + 1)];
|
|
|
|
v111 = noise_buf[idx(1, noisey + 1, noisez + 1)];
|
2012-11-26 03:16:48 +01:00
|
|
|
|
|
|
|
u = orig_u;
|
|
|
|
noisex = 0;
|
|
|
|
for (i = 0; i != sx; i++) {
|
2022-06-11 20:01:30 +02:00
|
|
|
gradient_buf[index++] = triLinearInterpolation(
|
2014-12-08 09:25:14 +01:00
|
|
|
v000, v100, v010, v110,
|
|
|
|
v001, v101, v011, v111,
|
2022-06-11 20:01:30 +02:00
|
|
|
u, v, w,
|
|
|
|
eased);
|
2014-10-27 07:02:38 +01:00
|
|
|
|
2012-11-26 03:16:48 +01:00
|
|
|
u += step_x;
|
|
|
|
if (u >= 1.0) {
|
|
|
|
u -= 1.0;
|
|
|
|
noisex++;
|
|
|
|
v000 = v100;
|
|
|
|
v010 = v110;
|
2014-12-08 09:25:14 +01:00
|
|
|
v100 = noise_buf[idx(noisex + 1, noisey, noisez)];
|
|
|
|
v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)];
|
2012-11-26 03:16:48 +01:00
|
|
|
v001 = v101;
|
|
|
|
v011 = v111;
|
2014-12-08 09:25:14 +01:00
|
|
|
v101 = noise_buf[idx(noisex + 1, noisey, noisez + 1)];
|
|
|
|
v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)];
|
2012-11-26 03:16:48 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
v += step_y;
|
|
|
|
if (v >= 1.0) {
|
|
|
|
v -= 1.0;
|
|
|
|
noisey++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
w += step_z;
|
|
|
|
if (w >= 1.0) {
|
|
|
|
w -= 1.0;
|
|
|
|
noisez++;
|
|
|
|
}
|
2011-04-26 14:38:42 +02:00
|
|
|
}
|
|
|
|
}
|
2013-01-29 17:43:06 +01:00
|
|
|
#undef idx
|
2011-04-26 14:38:42 +02:00
|
|
|
|
2011-06-25 03:25:14 +02:00
|
|
|
|
2014-12-08 03:57:12 +01:00
|
|
|
float *Noise::perlinMap2D(float x, float y, float *persistence_map)
|
2014-10-27 07:02:38 +01:00
|
|
|
{
|
2013-02-26 07:57:59 +01:00
|
|
|
float f = 1.0, g = 1.0;
|
2014-10-27 07:02:38 +01:00
|
|
|
size_t bufsize = sx * sy;
|
2011-04-26 14:38:42 +02:00
|
|
|
|
2014-12-10 06:37:09 +01:00
|
|
|
x /= np.spread.X;
|
|
|
|
y /= np.spread.Y;
|
2011-06-25 03:25:14 +02:00
|
|
|
|
2014-10-27 07:02:38 +01:00
|
|
|
memset(result, 0, sizeof(float) * bufsize);
|
2011-04-26 14:38:42 +02:00
|
|
|
|
2014-12-08 03:57:12 +01:00
|
|
|
if (persistence_map) {
|
2014-12-08 09:25:14 +01:00
|
|
|
if (!persist_buf)
|
|
|
|
persist_buf = new float[bufsize];
|
2017-07-27 17:12:18 +02:00
|
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
|
|
persist_buf[i] = 1.0;
|
2012-11-26 03:16:48 +01:00
|
|
|
}
|
|
|
|
|
2014-12-10 06:37:09 +01:00
|
|
|
for (size_t oct = 0; oct < np.octaves; oct++) {
|
2013-04-06 17:19:59 +02:00
|
|
|
gradientMap2D(x * f, y * f,
|
2014-12-10 06:37:09 +01:00
|
|
|
f / np.spread.X, f / np.spread.Y,
|
|
|
|
seed + np.seed + oct);
|
2013-04-06 17:19:59 +02:00
|
|
|
|
2014-12-08 09:25:14 +01:00
|
|
|
updateResults(g, persist_buf, persistence_map, bufsize);
|
2013-04-06 17:19:59 +02:00
|
|
|
|
2014-12-10 06:37:09 +01:00
|
|
|
f *= np.lacunarity;
|
|
|
|
g *= np.persist;
|
2013-04-06 17:19:59 +02:00
|
|
|
}
|
2014-11-29 22:50:18 +01:00
|
|
|
|
2018-04-03 21:58:29 +02:00
|
|
|
if (std::fabs(np.offset - 0.f) > 0.00001 || std::fabs(np.scale - 1.f) > 0.00001) {
|
2014-12-11 05:35:37 +01:00
|
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
|
|
result[i] = result[i] * np.scale + np.offset;
|
|
|
|
}
|
|
|
|
|
2013-04-06 17:19:59 +02:00
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-12-08 03:57:12 +01:00
|
|
|
float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map)
|
2014-10-27 07:02:38 +01:00
|
|
|
{
|
2013-02-26 07:57:59 +01:00
|
|
|
float f = 1.0, g = 1.0;
|
2014-10-27 07:02:38 +01:00
|
|
|
size_t bufsize = sx * sy * sz;
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2014-12-10 06:37:09 +01:00
|
|
|
x /= np.spread.X;
|
|
|
|
y /= np.spread.Y;
|
|
|
|
z /= np.spread.Z;
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2014-10-27 07:02:38 +01:00
|
|
|
memset(result, 0, sizeof(float) * bufsize);
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2014-12-08 03:57:12 +01:00
|
|
|
if (persistence_map) {
|
2014-12-08 09:25:14 +01:00
|
|
|
if (!persist_buf)
|
|
|
|
persist_buf = new float[bufsize];
|
2017-07-27 17:12:18 +02:00
|
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
|
|
persist_buf[i] = 1.0;
|
2014-12-08 03:57:12 +01:00
|
|
|
}
|
|
|
|
|
2014-12-10 06:37:09 +01:00
|
|
|
for (size_t oct = 0; oct < np.octaves; oct++) {
|
2012-11-26 03:16:48 +01:00
|
|
|
gradientMap3D(x * f, y * f, z * f,
|
2014-12-10 06:37:09 +01:00
|
|
|
f / np.spread.X, f / np.spread.Y, f / np.spread.Z,
|
|
|
|
seed + np.seed + oct);
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2014-12-08 09:25:14 +01:00
|
|
|
updateResults(g, persist_buf, persistence_map, bufsize);
|
2012-11-26 03:16:48 +01:00
|
|
|
|
2014-12-10 06:37:09 +01:00
|
|
|
f *= np.lacunarity;
|
|
|
|
g *= np.persist;
|
2012-11-26 03:16:48 +01:00
|
|
|
}
|
|
|
|
|
2018-04-03 21:58:29 +02:00
|
|
|
if (std::fabs(np.offset - 0.f) > 0.00001 || std::fabs(np.scale - 1.f) > 0.00001) {
|
2014-12-11 05:35:37 +01:00
|
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
|
|
result[i] = result[i] * np.scale + np.offset;
|
|
|
|
}
|
|
|
|
|
2012-11-26 03:16:48 +01:00
|
|
|
return result;
|
|
|
|
}
|
2012-12-18 19:23:16 +01:00
|
|
|
|
|
|
|
|
2014-12-08 03:57:12 +01:00
|
|
|
void Noise::updateResults(float g, float *gmap,
|
2017-08-19 11:30:46 +02:00
|
|
|
const float *persistence_map, size_t bufsize)
|
2014-12-08 03:57:12 +01:00
|
|
|
{
|
|
|
|
// This looks very ugly, but it is 50-70% faster than having
|
|
|
|
// conditional statements inside the loop
|
2014-12-10 06:37:09 +01:00
|
|
|
if (np.flags & NOISE_FLAG_ABSVALUE) {
|
2014-12-08 03:57:12 +01:00
|
|
|
if (persistence_map) {
|
|
|
|
for (size_t i = 0; i != bufsize; i++) {
|
2018-04-03 21:58:29 +02:00
|
|
|
result[i] += gmap[i] * std::fabs(gradient_buf[i]);
|
2014-12-08 03:57:12 +01:00
|
|
|
gmap[i] *= persistence_map[i];
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (size_t i = 0; i != bufsize; i++)
|
2018-04-03 21:58:29 +02:00
|
|
|
result[i] += g * std::fabs(gradient_buf[i]);
|
2014-12-08 03:57:12 +01:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (persistence_map) {
|
|
|
|
for (size_t i = 0; i != bufsize; i++) {
|
2014-12-08 09:25:14 +01:00
|
|
|
result[i] += gmap[i] * gradient_buf[i];
|
2014-12-08 03:57:12 +01:00
|
|
|
gmap[i] *= persistence_map[i];
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (size_t i = 0; i != bufsize; i++)
|
2014-12-08 09:25:14 +01:00
|
|
|
result[i] += g * gradient_buf[i];
|
2014-12-08 03:57:12 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|