Smoothed yaw rotation for objects (#6825)

This commit is contained in:
SmallJoker 2018-08-03 00:25:37 +02:00 committed by Paramat
parent 741e3efaf5
commit f3997025fd
4 changed files with 89 additions and 52 deletions

@ -53,51 +53,65 @@ struct ToolCapabilities;
std::unordered_map<u16, ClientActiveObject::Factory> ClientActiveObject::m_types;
void SmoothTranslator::init(v3f vect)
template<typename T>
void SmoothTranslator<T>::init(T current)
{
vect_old = vect;
vect_show = vect;
vect_aim = vect;
anim_counter = 0;
val_old = current;
val_current = current;
val_target = current;
anim_time = 0;
anim_time_counter = 0;
aim_is_end = true;
}
void SmoothTranslator::update(v3f vect_new, bool is_end_position, float update_interval)
template<typename T>
void SmoothTranslator<T>::update(T new_target, bool is_end_position, float update_interval)
{
aim_is_end = is_end_position;
vect_old = vect_show;
vect_aim = vect_new;
if(update_interval > 0)
{
val_old = val_current;
val_target = new_target;
if (update_interval > 0) {
anim_time = update_interval;
} else {
if(anim_time < 0.001 || anim_time > 1.0)
if (anim_time < 0.001 || anim_time > 1.0)
anim_time = anim_time_counter;
else
anim_time = anim_time * 0.9 + anim_time_counter * 0.1;
}
anim_time_counter = 0;
anim_counter = 0;
}
void SmoothTranslator::translate(f32 dtime)
template<typename T>
void SmoothTranslator<T>::translate(f32 dtime)
{
anim_time_counter = anim_time_counter + dtime;
anim_counter = anim_counter + dtime;
v3f vect_move = vect_aim - vect_old;
T val_diff = val_target - val_old;
f32 moveratio = 1.0;
if(anim_time > 0.001)
if (anim_time > 0.001)
moveratio = anim_time_counter / anim_time;
f32 move_end = aim_is_end ? 1.0 : 1.5;
// Move a bit less than should, to avoid oscillation
moveratio = moveratio * 0.8;
float move_end = 1.5;
if(aim_is_end)
move_end = 1.0;
if(moveratio > move_end)
moveratio = move_end;
vect_show = vect_old + vect_move * moveratio;
moveratio = std::min(moveratio * 0.8f, move_end);
val_current = val_old + val_diff * moveratio;
}
void SmoothTranslatorWrapped::translate(f32 dtime)
{
anim_time_counter = anim_time_counter + dtime;
f32 val_diff = std::abs(val_target - val_old);
if (val_diff > 180.f)
val_diff = 360.f - val_diff;
f32 moveratio = 1.0;
if (anim_time > 0.001)
moveratio = anim_time_counter / anim_time;
f32 move_end = aim_is_end ? 1.0 : 1.5;
// Move a bit less than should, to avoid oscillation
moveratio = std::min(moveratio * 0.8f, move_end);
wrappedApproachShortest(val_current, val_target,
val_diff * moveratio, 360.f);
}
/*
@ -331,7 +345,9 @@ void GenericCAO::processInitData(const std::string &data)
processMessage(message);
}
m_yaw = wrapDegrees_0_360(m_yaw);
pos_translator.init(m_position);
yaw_translator.init(m_yaw);
updateNodePos();
}
@ -359,7 +375,7 @@ v3f GenericCAO::getPosition()
return m_position;
}
return pos_translator.vect_show;
return pos_translator.val_current;
}
const bool GenericCAO::isImmortal()
@ -717,10 +733,10 @@ void GenericCAO::updateNodePos()
if (node) {
v3s16 camera_offset = m_env->getCameraOffset();
node->setPosition(pos_translator.vect_show - intToFloat(camera_offset, BS));
node->setPosition(pos_translator.val_current - intToFloat(camera_offset, BS));
if (node != m_spritenode) { // rotate if not a sprite
v3f rot = node->getRotation();
rot.Y = -m_yaw;
rot.Y = m_is_local_player ? -m_yaw : -yaw_translator.val_current;
node->setRotation(rot);
}
}
@ -735,10 +751,11 @@ void GenericCAO::step(float dtime, ClientEnvironment *env)
int old_anim = player->last_animation;
float old_anim_speed = player->last_animation_speed;
m_position = player->getPosition();
m_yaw = wrapDegrees_0_360(player->getYaw());
m_velocity = v3f(0,0,0);
m_acceleration = v3f(0,0,0);
pos_translator.vect_show = m_position;
m_yaw = player->getYaw();
pos_translator.val_current = m_position;
yaw_translator.val_current = m_yaw;
const PlayerControl &controls = player->getPlayerControl();
bool walking = false;
@ -841,7 +858,7 @@ void GenericCAO::step(float dtime, ClientEnvironment *env)
m_position = getPosition();
m_velocity = v3f(0,0,0);
m_acceleration = v3f(0,0,0);
pos_translator.vect_show = m_position;
pos_translator.val_current = m_position;
if(m_is_local_player) // Update local player attachment position
{
@ -850,7 +867,8 @@ void GenericCAO::step(float dtime, ClientEnvironment *env)
m_env->getLocalPlayer()->parent = getParent();
}
} else {
v3f lastpos = pos_translator.vect_show;
yaw_translator.translate(dtime);
v3f lastpos = pos_translator.val_current;
if(m_prop.physical)
{
@ -882,7 +900,7 @@ void GenericCAO::step(float dtime, ClientEnvironment *env)
updateNodePos();
}
float moved = lastpos.getDistanceFrom(pos_translator.vect_show);
float moved = lastpos.getDistanceFrom(pos_translator.val_current);
m_step_distance_counter += moved;
if (m_step_distance_counter > 1.5f * BS) {
m_step_distance_counter = 0.0f;
@ -921,6 +939,7 @@ void GenericCAO::step(float dtime, ClientEnvironment *env)
}
if (!getParent() && std::fabs(m_prop.automatic_rotate) > 0.001) {
m_yaw += dtime * m_prop.automatic_rotate * 180 / M_PI;
yaw_translator.val_current = m_yaw;
updateNodePos();
}
@ -931,14 +950,9 @@ void GenericCAO::step(float dtime, ClientEnvironment *env)
+ m_prop.automatic_face_movement_dir_offset;
float max_rotation_delta =
dtime * m_prop.automatic_face_movement_max_rotation_per_sec;
float delta = wrapDegrees_0_360(target_yaw - m_yaw);
if (delta > max_rotation_delta && 360 - delta > max_rotation_delta) {
m_yaw += (delta < 180) ? max_rotation_delta : -max_rotation_delta;
m_yaw = wrapDegrees_0_360(m_yaw);
} else {
m_yaw = target_yaw;
}
wrappedApproachShortest(m_yaw, target_yaw, max_rotation_delta, 360.f);
yaw_translator.val_current = m_yaw;
updateNodePos();
}
}
@ -1304,6 +1318,7 @@ void GenericCAO::processMessage(const std::string &data)
m_yaw = readF1000(is);
else
readF1000(is);
m_yaw = wrapDegrees_0_360(m_yaw);
bool do_interpolate = readU8(is);
bool is_end_position = readU8(is);
float update_interval = readF1000(is);
@ -1323,6 +1338,7 @@ void GenericCAO::processMessage(const std::string &data)
} else {
pos_translator.init(m_position);
}
yaw_translator.update(m_yaw, false, update_interval);
updateNodePos();
} else if (cmd == GENERIC_CMD_SET_TEXTURE_MOD) {
std::string mod = deSerializeString(is);

@ -34,25 +34,31 @@ struct Nametag;
SmoothTranslator
*/
template<typename T>
struct SmoothTranslator
{
v3f vect_old;
v3f vect_show;
v3f vect_aim;
f32 anim_counter = 0;
T val_old;
T val_current;
T val_target;
f32 anim_time = 0;
f32 anim_time_counter = 0;
bool aim_is_end = true;
SmoothTranslator() = default;
void init(v3f vect);
void init(T current);
void update(v3f vect_new, bool is_end_position=false, float update_interval=-1);
void update(T new_target, bool is_end_position = false,
float update_interval = -1);
void translate(f32 dtime);
};
struct SmoothTranslatorWrapped : SmoothTranslator<f32>
{
void translate(f32 dtime);
};
class GenericCAO : public ClientActiveObject
{
private:
@ -76,7 +82,8 @@ private:
v3f m_acceleration;
float m_yaw = 0.0f;
s16 m_hp = 1;
SmoothTranslator pos_translator;
SmoothTranslator<v3f> pos_translator;
SmoothTranslatorWrapped yaw_translator;
// Spritesheet/animation stuff
v2f m_tx_size = v2f(1,1);
v2s16 m_tx_basepos;

@ -443,14 +443,9 @@ void LuaEntitySAO::step(float dtime, bool send_recommended)
+ m_prop.automatic_face_movement_dir_offset;
float max_rotation_delta =
dtime * m_prop.automatic_face_movement_max_rotation_per_sec;
float delta = wrapDegrees_0_360(target_yaw - m_yaw);
if (delta > max_rotation_delta && 360 - delta > max_rotation_delta) {
m_yaw += (delta < 180) ? max_rotation_delta : -max_rotation_delta;
m_yaw = wrapDegrees_0_360(m_yaw);
} else {
m_yaw = target_yaw;
}
m_yaw = wrapDegrees_0_360(m_yaw);
wrappedApproachShortest(m_yaw, target_yaw, max_rotation_delta, 360.f);
}
}

@ -376,3 +376,22 @@ inline u32 npot2(u32 orig) {
orig |= orig >> 16;
return orig + 1;
}
// Gradual steps towards the target value in a wrapped (circular) system
// using the shorter of both ways
template<typename T>
inline void wrappedApproachShortest(T &current, const T target, const T stepsize,
const T maximum)
{
T delta = target - current;
if (delta < 0)
delta += maximum;
if (delta > stepsize && maximum - delta > stepsize) {
current += (delta < maximum / 2) ? stepsize : -stepsize;
if (current >= maximum)
current -= maximum;
} else {
current = target;
}
}