minetest/src/client/clouds.cpp

385 lines
11 KiB
C++

/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "client/renderingengine.h"
#include "clouds.h"
#include "noise.h"
#include "constants.h"
#include "debug.h"
#include "profiler.h"
#include "settings.h"
#include <cmath>
// Menu clouds are created later
class Clouds;
Clouds *g_menuclouds = NULL;
scene::ISceneManager *g_menucloudsmgr = NULL;
// Constant for now
static constexpr const float cloud_size = BS * 64.0f;
static void cloud_3d_setting_changed(const std::string &settingname, void *data)
{
((Clouds *)data)->readSettings();
}
Clouds::Clouds(scene::ISceneManager* mgr,
s32 id,
u32 seed
):
scene::ISceneNode(mgr->getRootSceneNode(), mgr, id),
m_seed(seed)
{
m_material.setFlag(video::EMF_LIGHTING, false);
//m_material.setFlag(video::EMF_BACK_FACE_CULLING, false);
m_material.setFlag(video::EMF_BACK_FACE_CULLING, true);
m_material.setFlag(video::EMF_BILINEAR_FILTER, false);
m_material.setFlag(video::EMF_FOG_ENABLE, true);
m_material.setFlag(video::EMF_ANTI_ALIASING, true);
//m_material.MaterialType = video::EMT_TRANSPARENT_VERTEX_ALPHA;
m_material.MaterialType = video::EMT_TRANSPARENT_ALPHA_CHANNEL;
m_params.height = 120;
m_params.density = 0.4f;
m_params.thickness = 16.0f;
m_params.color_bright = video::SColor(229, 240, 240, 255);
m_params.color_ambient = video::SColor(255, 0, 0, 0);
m_params.speed = v2f(0.0f, -2.0f);
readSettings();
g_settings->registerChangedCallback("enable_3d_clouds",
&cloud_3d_setting_changed, this);
updateBox();
}
Clouds::~Clouds()
{
g_settings->deregisterChangedCallback("enable_3d_clouds",
&cloud_3d_setting_changed, this);
}
void Clouds::OnRegisterSceneNode()
{
if(IsVisible)
{
SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT);
//SceneManager->registerNodeForRendering(this, scene::ESNRP_SOLID);
}
ISceneNode::OnRegisterSceneNode();
}
void Clouds::render()
{
if (m_params.density <= 0.0f)
return; // no need to do anything
video::IVideoDriver* driver = SceneManager->getVideoDriver();
if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_TRANSPARENT)
//if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_SOLID)
return;
ScopeProfiler sp(g_profiler, "Clouds::render()", SPT_AVG);
int num_faces_to_draw = m_enable_3d ? 6 : 1;
m_material.setFlag(video::EMF_BACK_FACE_CULLING, m_enable_3d);
driver->setTransform(video::ETS_WORLD, AbsoluteTransformation);
driver->setMaterial(m_material);
/*
Clouds move from Z+ towards Z-
*/
const float cloud_full_radius = cloud_size * m_cloud_radius_i;
v2f camera_pos_2d(m_camera_pos.X, m_camera_pos.Z);
// Position of cloud noise origin from the camera
v2f cloud_origin_from_camera_f = m_origin - camera_pos_2d;
// The center point of drawing in the noise
v2f center_of_drawing_in_noise_f = -cloud_origin_from_camera_f;
// The integer center point of drawing in the noise
v2s16 center_of_drawing_in_noise_i(
std::floor(center_of_drawing_in_noise_f.X / cloud_size),
std::floor(center_of_drawing_in_noise_f.Y / cloud_size)
);
// The world position of the integer center point of drawing in the noise
v2f world_center_of_drawing_in_noise_f = v2f(
center_of_drawing_in_noise_i.X * cloud_size,
center_of_drawing_in_noise_i.Y * cloud_size
) + m_origin;
/*video::SColor c_top(128,b*240,b*240,b*255);
video::SColor c_side_1(128,b*230,b*230,b*255);
video::SColor c_side_2(128,b*220,b*220,b*245);
video::SColor c_bottom(128,b*205,b*205,b*230);*/
video::SColorf c_top_f(m_color);
video::SColorf c_side_1_f(m_color);
video::SColorf c_side_2_f(m_color);
video::SColorf c_bottom_f(m_color);
c_side_1_f.r *= 0.95;
c_side_1_f.g *= 0.95;
c_side_1_f.b *= 0.95;
c_side_2_f.r *= 0.90;
c_side_2_f.g *= 0.90;
c_side_2_f.b *= 0.90;
c_bottom_f.r *= 0.80;
c_bottom_f.g *= 0.80;
c_bottom_f.b *= 0.80;
video::SColor c_top = c_top_f.toSColor();
video::SColor c_side_1 = c_side_1_f.toSColor();
video::SColor c_side_2 = c_side_2_f.toSColor();
video::SColor c_bottom = c_bottom_f.toSColor();
// Get fog parameters for setting them back later
video::SColor fog_color(0,0,0,0);
video::E_FOG_TYPE fog_type = video::EFT_FOG_LINEAR;
f32 fog_start = 0;
f32 fog_end = 0;
f32 fog_density = 0;
bool fog_pixelfog = false;
bool fog_rangefog = false;
driver->getFog(fog_color, fog_type, fog_start, fog_end, fog_density,
fog_pixelfog, fog_rangefog);
// Set our own fog
driver->setFog(fog_color, fog_type, cloud_full_radius * 0.5,
cloud_full_radius*1.2, fog_density, fog_pixelfog, fog_rangefog);
// Read noise
std::vector<bool> grid(m_cloud_radius_i * 2 * m_cloud_radius_i * 2);
std::vector<video::S3DVertex> vertices;
vertices.reserve(16 * m_cloud_radius_i * m_cloud_radius_i);
for(s16 zi = -m_cloud_radius_i; zi < m_cloud_radius_i; zi++) {
u32 si = (zi + m_cloud_radius_i) * m_cloud_radius_i * 2 + m_cloud_radius_i;
for (s16 xi = -m_cloud_radius_i; xi < m_cloud_radius_i; xi++) {
u32 i = si + xi;
grid[i] = gridFilled(
xi + center_of_drawing_in_noise_i.X,
zi + center_of_drawing_in_noise_i.Y
);
}
}
#define GETINDEX(x, z, radius) (((z)+(radius))*(radius)*2 + (x)+(radius))
#define INAREA(x, z, radius) \
((x) >= -(radius) && (x) < (radius) && (z) >= -(radius) && (z) < (radius))
for (s16 zi0= -m_cloud_radius_i; zi0 < m_cloud_radius_i; zi0++)
for (s16 xi0= -m_cloud_radius_i; xi0 < m_cloud_radius_i; xi0++)
{
s16 zi = zi0;
s16 xi = xi0;
// Draw from back to front for proper transparency
if(zi >= 0)
zi = m_cloud_radius_i - zi - 1;
if(xi >= 0)
xi = m_cloud_radius_i - xi - 1;
u32 i = GETINDEX(xi, zi, m_cloud_radius_i);
if (!grid[i])
continue;
v2f p0 = v2f(xi,zi)*cloud_size + world_center_of_drawing_in_noise_f;
video::S3DVertex v[4] = {
video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 1),
video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 1),
video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 0),
video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 0)
};
const f32 rx = cloud_size / 2.0f;
// if clouds are flat, the top layer should be at the given height
const f32 ry = m_enable_3d ? m_params.thickness * BS : 0.0f;
const f32 rz = cloud_size / 2;
for(int i=0; i<num_faces_to_draw; i++)
{
switch(i)
{
case 0: // top
for (video::S3DVertex &vertex : v) {
vertex.Normal.set(0,1,0);
}
v[0].Pos.set(-rx, ry,-rz);
v[1].Pos.set(-rx, ry, rz);
v[2].Pos.set( rx, ry, rz);
v[3].Pos.set( rx, ry,-rz);
break;
case 1: // back
if (INAREA(xi, zi - 1, m_cloud_radius_i)) {
u32 j = GETINDEX(xi, zi - 1, m_cloud_radius_i);
if(grid[j])
continue;
}
for (video::S3DVertex &vertex : v) {
vertex.Color = c_side_1;
vertex.Normal.set(0,0,-1);
}
v[0].Pos.set(-rx, ry,-rz);
v[1].Pos.set( rx, ry,-rz);
v[2].Pos.set( rx, 0,-rz);
v[3].Pos.set(-rx, 0,-rz);
break;
case 2: //right
if (INAREA(xi + 1, zi, m_cloud_radius_i)) {
u32 j = GETINDEX(xi+1, zi, m_cloud_radius_i);
if(grid[j])
continue;
}
for (video::S3DVertex &vertex : v) {
vertex.Color = c_side_2;
vertex.Normal.set(1,0,0);
}
v[0].Pos.set( rx, ry,-rz);
v[1].Pos.set( rx, ry, rz);
v[2].Pos.set( rx, 0, rz);
v[3].Pos.set( rx, 0,-rz);
break;
case 3: // front
if (INAREA(xi, zi + 1, m_cloud_radius_i)) {
u32 j = GETINDEX(xi, zi + 1, m_cloud_radius_i);
if(grid[j])
continue;
}
for (video::S3DVertex &vertex : v) {
vertex.Color = c_side_1;
vertex.Normal.set(0,0,-1);
}
v[0].Pos.set( rx, ry, rz);
v[1].Pos.set(-rx, ry, rz);
v[2].Pos.set(-rx, 0, rz);
v[3].Pos.set( rx, 0, rz);
break;
case 4: // left
if (INAREA(xi-1, zi, m_cloud_radius_i)) {
u32 j = GETINDEX(xi-1, zi, m_cloud_radius_i);
if(grid[j])
continue;
}
for (video::S3DVertex &vertex : v) {
vertex.Color = c_side_2;
vertex.Normal.set(-1,0,0);
}
v[0].Pos.set(-rx, ry, rz);
v[1].Pos.set(-rx, ry,-rz);
v[2].Pos.set(-rx, 0,-rz);
v[3].Pos.set(-rx, 0, rz);
break;
case 5: // bottom
for (video::S3DVertex &vertex : v) {
vertex.Color = c_bottom;
vertex.Normal.set(0,-1,0);
}
v[0].Pos.set( rx, 0, rz);
v[1].Pos.set(-rx, 0, rz);
v[2].Pos.set(-rx, 0,-rz);
v[3].Pos.set( rx, 0,-rz);
break;
}
v3f pos(p0.X, m_params.height * BS, p0.Y);
pos -= intToFloat(m_camera_offset, BS);
for (video::S3DVertex &vertex : v) {
vertex.Pos += pos;
vertices.push_back(vertex);
}
}
}
int quad_count = vertices.size() / 4;
std::vector<u16> indices;
indices.reserve(quad_count * 6);
for (int k = 0; k < quad_count; k++) {
indices.push_back(4 * k + 0);
indices.push_back(4 * k + 1);
indices.push_back(4 * k + 2);
indices.push_back(4 * k + 2);
indices.push_back(4 * k + 3);
indices.push_back(4 * k + 0);
}
driver->drawVertexPrimitiveList(vertices.data(), vertices.size(), indices.data(), 2 * quad_count,
video::EVT_STANDARD, scene::EPT_TRIANGLES, video::EIT_16BIT);
// Restore fog settings
driver->setFog(fog_color, fog_type, fog_start, fog_end, fog_density,
fog_pixelfog, fog_rangefog);
}
void Clouds::step(float dtime)
{
m_origin = m_origin + dtime * BS * m_params.speed;
}
void Clouds::update(const v3f &camera_p, const video::SColorf &color_diffuse)
{
video::SColorf ambient(m_params.color_ambient);
video::SColorf bright(m_params.color_bright);
m_camera_pos = camera_p;
m_color.r = core::clamp(color_diffuse.r * bright.r, ambient.r, 1.0f);
m_color.g = core::clamp(color_diffuse.g * bright.g, ambient.g, 1.0f);
m_color.b = core::clamp(color_diffuse.b * bright.b, ambient.b, 1.0f);
m_color.a = bright.a;
// is the camera inside the cloud mesh?
m_camera_inside_cloud = false; // default
if (m_enable_3d) {
float camera_height = camera_p.Y - BS * m_camera_offset.Y;
if (camera_height >= m_box.MinEdge.Y &&
camera_height <= m_box.MaxEdge.Y) {
v2f camera_in_noise;
camera_in_noise.X = floor((camera_p.X - m_origin.X) / cloud_size + 0.5);
camera_in_noise.Y = floor((camera_p.Z - m_origin.Y) / cloud_size + 0.5);
bool filled = gridFilled(camera_in_noise.X, camera_in_noise.Y);
m_camera_inside_cloud = filled;
}
}
}
void Clouds::readSettings()
{
m_cloud_radius_i = g_settings->getU16("cloud_radius");
m_enable_3d = g_settings->getBool("enable_3d_clouds");
}
bool Clouds::gridFilled(int x, int y) const
{
float cloud_size_noise = cloud_size / (BS * 200.f);
float noise = noise2d_perlin(
(float)x * cloud_size_noise,
(float)y * cloud_size_noise,
m_seed, 3, 0.5);
// normalize to 0..1 (given 3 octaves)
static constexpr const float noise_bound = 1.0f + 0.5f + 0.25f;
float density = noise / noise_bound * 0.5f + 0.5f;
return (density < m_params.density);
}