This commit is contained in:
s2ks 2022-05-27 22:37:32 +02:00
parent bcc53c48a7
commit c88d3bcf85
2 changed files with 121 additions and 122 deletions

@ -1261,13 +1261,13 @@ export const codingContractTypesMetadata: ICodingContractTypeMetadata[] = [
"Value 8 is expressed in binary as '1000', which will be encoded",
"with the pattern 'pppdpddd', where p is a parity bit and d a data bit,\n",
"or '10101' (Value 21) will result into (pppdpdddpd) '1001101011'.\n",
"The answer should be given as a string containing only 1s and 0s.\n",
"NOTE: the endianness of the data bits is reversed in relation to the endianness of the parity bits.\n",
"The answer should be given as a string containing only 1s and 0s.\n",
"NOTE: the endianness of the data bits is reversed in relation to the endianness of the parity bits.\n",
"NOTE: The bit at index zero is the overall parity bit, this should be set last.\n",
"NOTE 2: You should watch the Hamming Code video from 3Blue1Brown, which explains the 'rule' of encoding,",
"including the first index parity bit mentioned in the previous note.\n\n",
"Extra rule for encoding:\n",
"There should be no leading zeros in the 'data bit' section",
"There should be no leading zeros in the 'data bit' section",
].join(" ");
},
gen: (): number => {
@ -1290,7 +1290,7 @@ export const codingContractTypesMetadata: ICodingContractTypeMetadata[] = [
"Note: The length of the binary string is dynamic, but it's encoding/decoding follows Hamming's 'rule'\n",
"Note 2: Index 0 is an 'overall' parity bit. Watch the Hamming code video from 3Blue1Brown for more information\n",
"Note 3: There's a ~55% chance for an altered Bit. So... MAYBE there is an altered Bit 😉\n",
"Note: The endianness of the \
"Note: The endianness of the \
encoded decimal value is reversed in relation to the endianness of the Hamming code. Where \
the Hamming code is expressed as little-endian (LSB at index 0), the decimal value encoded in it is expressed as big-endian \
(MSB at index 0)\n",

@ -1,156 +1,155 @@
export function HammingEncode(data: number): string {
const enc: Array<number> = [0];
const data_bits: Array<any> = data.toString(2).split("").reverse();
const enc: Array<number> = [0];
const data_bits: Array<any> = data.toString(2).split("").reverse();
data_bits.forEach((e, i, a) => {
a[i] = parseInt(e);
});
data_bits.forEach((e, i, a) => {
a[i] = parseInt(e);
});
let k = data_bits.length;
let k = data_bits.length;
/* NOTE: writing the data like this flips the endianness, this is what the
* original implementation by Hedrauta did so I'm keeping it like it was. */
for (let i = 1; k > 0; i++) {
if ((i & (i - 1)) != 0) {
enc[i] = data_bits[--k];
} else {
enc[i] = 0;
}
}
/* NOTE: writing the data like this flips the endianness, this is what the
* original implementation by Hedrauta did so I'm keeping it like it was. */
for(let i = 1; k > 0; i++) {
if((i & (i - 1)) != 0) {
enc[i] = data_bits[--k];
} else {
enc[i] = 0;
}
}
let parity: any = 0;
let parity: any = 0;
/* Figure out the subsection parities */
for (let i = 0; i < enc.length; i++) {
if (enc[i]) {
parity ^= i;
}
}
/* Figure out the subsection parities */
for(let i = 0; i < enc.length; i++) {
if(enc[i]) {
parity ^= i;
}
}
parity = parity.toString(2).split("").reverse();
parity.forEach((e: any, i: any, a: any) => {
a[i] = parseInt(e);
});
parity = parity.toString(2).split("").reverse();
parity.forEach((e: any, i: any , a: any) => {
a[i] = parseInt(e);
});
/* Set the parity bits accordingly */
for (let i = 0; i < parity.length; i++) {
enc[2 ** i] = parity[i] ? 1 : 0;
}
/* Set the parity bits accordingly */
for(let i = 0; i < parity.length; i++) {
enc[2 ** i] = parity[i] ? 1 : 0;
}
parity = 0;
/* Figure out the overall parity for the entire block */
for (let i = 0; i < enc.length; i++) {
if (enc[i]) {
parity++;
}
}
parity = 0;
/* Figure out the overall parity for the entire block */
for(let i = 0; i < enc.length; i++) {
if(enc[i]) {
parity++;
}
}
/* Finally set the overall parity bit */
enc[0] = parity % 2 == 0 ? 0 : 1;
/* Finally set the overall parity bit */
enc[0] = parity % 2 == 0 ? 0 : 1;
return enc.join("");
return enc.join("");
}
export function HammingEncodeProperly(data: number): string {
/* How many bits do we need?
* n = 2^m
* k = 2^m - m - 1
* where k is the number of data bits, m the number
* of parity bits and n the number of total bits. */
/* How many bits do we need?
* n = 2^m
* k = 2^m - m - 1
* where k is the number of data bits, m the number
* of parity bits and n the number of total bits. */
let m = 1;
let m = 1;
while((2 ** ((2 ** m) - m - 1)) < data) {
m++;
}
while (2 ** (2 ** m - m - 1) < data) {
m++;
}
const n: number = (2 ** m);
const k: number = (2 ** m) - m - 1;
const n: number = 2 ** m;
const k: number = 2 ** m - m - 1;
const enc: Array<number> = [0];
const data_bits: Array<any> = data.toString(2).split("").reverse();
const enc: Array<number> = [0];
const data_bits: Array<any> = data.toString(2).split("").reverse();
data_bits.forEach((e, i, a) => {
a[i] = parseInt(e);
});
data_bits.forEach((e, i, a) => {
a[i] = parseInt(e);
});
/* Flip endianness as in the original implementation by Hedrauta
* and write the data back to front
* XXX why do we do this? */
for(let i = 1, j = k; i < n; i++) {
if((i & (i - 1)) != 0) {
enc[i] = data_bits[--j] ? data_bits[j] : 0;
}
}
/* Flip endianness as in the original implementation by Hedrauta
* and write the data back to front
* XXX why do we do this? */
for (let i = 1, j = k; i < n; i++) {
if ((i & (i - 1)) != 0) {
enc[i] = data_bits[--j] ? data_bits[j] : 0;
}
}
let parity: any = 0;
let parity: any = 0;
/* Figure out the subsection parities */
for(let i = 0; i < n; i++) {
if(enc[i]) {
parity ^= i;
}
}
/* Figure out the subsection parities */
for (let i = 0; i < n; i++) {
if (enc[i]) {
parity ^= i;
}
}
parity = parity.toString(2).split("").reverse();
parity.forEach((e: any, i: any , a: any) => {
a[i] = parseInt(e);
});
parity = parity.toString(2).split("").reverse();
parity.forEach((e: any, i: any, a: any) => {
a[i] = parseInt(e);
});
/* Set the parity bits accordingly */
for(let i = 0; i < m; i++) {
enc[2 ** i] = parity[i] ? 1 : 0;
}
/* Set the parity bits accordingly */
for (let i = 0; i < m; i++) {
enc[2 ** i] = parity[i] ? 1 : 0;
}
parity = 0;
/* Figure out the overall parity for the entire block */
for(let i = 0; i < n; i++) {
if(enc[i]) {
parity++;
}
}
parity = 0;
/* Figure out the overall parity for the entire block */
for (let i = 0; i < n; i++) {
if (enc[i]) {
parity++;
}
}
/* Finally set the overall parity bit */
enc[0] = parity % 2 == 0 ? 0 : 1;
/* Finally set the overall parity bit */
enc[0] = parity % 2 == 0 ? 0 : 1;
return enc.join("");
return enc.join("");
}
export function HammingDecode(data: string): number {
let err = 0;
const bits: Array<number> = [];
let err = 0;
const bits: Array<number> = [];
/* TODO why not just work with an array of digits from the start? */
for(const i in data.split("")) {
const bit = parseInt(data[i]);
bits[i] = bit;
/* TODO why not just work with an array of digits from the start? */
for (const i in data.split("")) {
const bit = parseInt(data[i]);
bits[i] = bit;
if(bit) {
err ^= +i;
}
}
if (bit) {
err ^= +i;
}
}
/* If err != 0 then it spells out the index of the bit that was flipped */
if(err) {
/* Flip to correct */
bits[err] = bits[err] ? 0 : 1;
}
/* If err != 0 then it spells out the index of the bit that was flipped */
if (err) {
/* Flip to correct */
bits[err] = bits[err] ? 0 : 1;
}
/* Now we have to read the message, bit 0 is unused (it's the overall parity bit
* which we don't care about). Each bit at an index that is a power of 2 is
* a parity bit and not part of the actual message. */
/* Now we have to read the message, bit 0 is unused (it's the overall parity bit
* which we don't care about). Each bit at an index that is a power of 2 is
* a parity bit and not part of the actual message. */
let ans = '';
let ans = "";
for(let i = 1; i < bits.length; i++) {
/* i is not a power of two so it's not a parity bit */
if((i & (i - 1)) != 0) {
ans += bits[i];
}
}
for (let i = 1; i < bits.length; i++) {
/* i is not a power of two so it's not a parity bit */
if ((i & (i - 1)) != 0) {
ans += bits[i];
}
}
/* TODO to avoid ambiguity about endianness why not let the player return the extracted (and corrected)
* data bits, rather than guessing at how to convert it to a decimal string? */
return parseInt(ans, 2);
/* TODO to avoid ambiguity about endianness why not let the player return the extracted (and corrected)
* data bits, rather than guessing at how to convert it to a decimal string? */
return parseInt(ans, 2);
}