mirror of
https://github.com/bitburner-official/bitburner-src.git
synced 2025-01-11 07:47:33 +01:00
format
This commit is contained in:
parent
bcc53c48a7
commit
c88d3bcf85
@ -1261,13 +1261,13 @@ export const codingContractTypesMetadata: ICodingContractTypeMetadata[] = [
|
||||
"Value 8 is expressed in binary as '1000', which will be encoded",
|
||||
"with the pattern 'pppdpddd', where p is a parity bit and d a data bit,\n",
|
||||
"or '10101' (Value 21) will result into (pppdpdddpd) '1001101011'.\n",
|
||||
"The answer should be given as a string containing only 1s and 0s.\n",
|
||||
"NOTE: the endianness of the data bits is reversed in relation to the endianness of the parity bits.\n",
|
||||
"The answer should be given as a string containing only 1s and 0s.\n",
|
||||
"NOTE: the endianness of the data bits is reversed in relation to the endianness of the parity bits.\n",
|
||||
"NOTE: The bit at index zero is the overall parity bit, this should be set last.\n",
|
||||
"NOTE 2: You should watch the Hamming Code video from 3Blue1Brown, which explains the 'rule' of encoding,",
|
||||
"including the first index parity bit mentioned in the previous note.\n\n",
|
||||
"Extra rule for encoding:\n",
|
||||
"There should be no leading zeros in the 'data bit' section",
|
||||
"There should be no leading zeros in the 'data bit' section",
|
||||
].join(" ");
|
||||
},
|
||||
gen: (): number => {
|
||||
@ -1290,7 +1290,7 @@ export const codingContractTypesMetadata: ICodingContractTypeMetadata[] = [
|
||||
"Note: The length of the binary string is dynamic, but it's encoding/decoding follows Hamming's 'rule'\n",
|
||||
"Note 2: Index 0 is an 'overall' parity bit. Watch the Hamming code video from 3Blue1Brown for more information\n",
|
||||
"Note 3: There's a ~55% chance for an altered Bit. So... MAYBE there is an altered Bit 😉\n",
|
||||
"Note: The endianness of the \
|
||||
"Note: The endianness of the \
|
||||
encoded decimal value is reversed in relation to the endianness of the Hamming code. Where \
|
||||
the Hamming code is expressed as little-endian (LSB at index 0), the decimal value encoded in it is expressed as big-endian \
|
||||
(MSB at index 0)\n",
|
||||
|
@ -1,156 +1,155 @@
|
||||
export function HammingEncode(data: number): string {
|
||||
const enc: Array<number> = [0];
|
||||
const data_bits: Array<any> = data.toString(2).split("").reverse();
|
||||
|
||||
const enc: Array<number> = [0];
|
||||
const data_bits: Array<any> = data.toString(2).split("").reverse();
|
||||
data_bits.forEach((e, i, a) => {
|
||||
a[i] = parseInt(e);
|
||||
});
|
||||
|
||||
data_bits.forEach((e, i, a) => {
|
||||
a[i] = parseInt(e);
|
||||
});
|
||||
let k = data_bits.length;
|
||||
|
||||
let k = data_bits.length;
|
||||
/* NOTE: writing the data like this flips the endianness, this is what the
|
||||
* original implementation by Hedrauta did so I'm keeping it like it was. */
|
||||
for (let i = 1; k > 0; i++) {
|
||||
if ((i & (i - 1)) != 0) {
|
||||
enc[i] = data_bits[--k];
|
||||
} else {
|
||||
enc[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* NOTE: writing the data like this flips the endianness, this is what the
|
||||
* original implementation by Hedrauta did so I'm keeping it like it was. */
|
||||
for(let i = 1; k > 0; i++) {
|
||||
if((i & (i - 1)) != 0) {
|
||||
enc[i] = data_bits[--k];
|
||||
} else {
|
||||
enc[i] = 0;
|
||||
}
|
||||
}
|
||||
let parity: any = 0;
|
||||
|
||||
let parity: any = 0;
|
||||
/* Figure out the subsection parities */
|
||||
for (let i = 0; i < enc.length; i++) {
|
||||
if (enc[i]) {
|
||||
parity ^= i;
|
||||
}
|
||||
}
|
||||
|
||||
/* Figure out the subsection parities */
|
||||
for(let i = 0; i < enc.length; i++) {
|
||||
if(enc[i]) {
|
||||
parity ^= i;
|
||||
}
|
||||
}
|
||||
parity = parity.toString(2).split("").reverse();
|
||||
parity.forEach((e: any, i: any, a: any) => {
|
||||
a[i] = parseInt(e);
|
||||
});
|
||||
|
||||
parity = parity.toString(2).split("").reverse();
|
||||
parity.forEach((e: any, i: any , a: any) => {
|
||||
a[i] = parseInt(e);
|
||||
});
|
||||
/* Set the parity bits accordingly */
|
||||
for (let i = 0; i < parity.length; i++) {
|
||||
enc[2 ** i] = parity[i] ? 1 : 0;
|
||||
}
|
||||
|
||||
/* Set the parity bits accordingly */
|
||||
for(let i = 0; i < parity.length; i++) {
|
||||
enc[2 ** i] = parity[i] ? 1 : 0;
|
||||
}
|
||||
parity = 0;
|
||||
/* Figure out the overall parity for the entire block */
|
||||
for (let i = 0; i < enc.length; i++) {
|
||||
if (enc[i]) {
|
||||
parity++;
|
||||
}
|
||||
}
|
||||
|
||||
parity = 0;
|
||||
/* Figure out the overall parity for the entire block */
|
||||
for(let i = 0; i < enc.length; i++) {
|
||||
if(enc[i]) {
|
||||
parity++;
|
||||
}
|
||||
}
|
||||
/* Finally set the overall parity bit */
|
||||
enc[0] = parity % 2 == 0 ? 0 : 1;
|
||||
|
||||
/* Finally set the overall parity bit */
|
||||
enc[0] = parity % 2 == 0 ? 0 : 1;
|
||||
|
||||
return enc.join("");
|
||||
return enc.join("");
|
||||
}
|
||||
|
||||
export function HammingEncodeProperly(data: number): string {
|
||||
/* How many bits do we need?
|
||||
* n = 2^m
|
||||
* k = 2^m - m - 1
|
||||
* where k is the number of data bits, m the number
|
||||
* of parity bits and n the number of total bits. */
|
||||
/* How many bits do we need?
|
||||
* n = 2^m
|
||||
* k = 2^m - m - 1
|
||||
* where k is the number of data bits, m the number
|
||||
* of parity bits and n the number of total bits. */
|
||||
|
||||
let m = 1;
|
||||
let m = 1;
|
||||
|
||||
while((2 ** ((2 ** m) - m - 1)) < data) {
|
||||
m++;
|
||||
}
|
||||
while (2 ** (2 ** m - m - 1) < data) {
|
||||
m++;
|
||||
}
|
||||
|
||||
const n: number = (2 ** m);
|
||||
const k: number = (2 ** m) - m - 1;
|
||||
const n: number = 2 ** m;
|
||||
const k: number = 2 ** m - m - 1;
|
||||
|
||||
const enc: Array<number> = [0];
|
||||
const data_bits: Array<any> = data.toString(2).split("").reverse();
|
||||
const enc: Array<number> = [0];
|
||||
const data_bits: Array<any> = data.toString(2).split("").reverse();
|
||||
|
||||
data_bits.forEach((e, i, a) => {
|
||||
a[i] = parseInt(e);
|
||||
});
|
||||
data_bits.forEach((e, i, a) => {
|
||||
a[i] = parseInt(e);
|
||||
});
|
||||
|
||||
/* Flip endianness as in the original implementation by Hedrauta
|
||||
* and write the data back to front
|
||||
* XXX why do we do this? */
|
||||
for(let i = 1, j = k; i < n; i++) {
|
||||
if((i & (i - 1)) != 0) {
|
||||
enc[i] = data_bits[--j] ? data_bits[j] : 0;
|
||||
}
|
||||
}
|
||||
/* Flip endianness as in the original implementation by Hedrauta
|
||||
* and write the data back to front
|
||||
* XXX why do we do this? */
|
||||
for (let i = 1, j = k; i < n; i++) {
|
||||
if ((i & (i - 1)) != 0) {
|
||||
enc[i] = data_bits[--j] ? data_bits[j] : 0;
|
||||
}
|
||||
}
|
||||
|
||||
let parity: any = 0;
|
||||
let parity: any = 0;
|
||||
|
||||
/* Figure out the subsection parities */
|
||||
for(let i = 0; i < n; i++) {
|
||||
if(enc[i]) {
|
||||
parity ^= i;
|
||||
}
|
||||
}
|
||||
/* Figure out the subsection parities */
|
||||
for (let i = 0; i < n; i++) {
|
||||
if (enc[i]) {
|
||||
parity ^= i;
|
||||
}
|
||||
}
|
||||
|
||||
parity = parity.toString(2).split("").reverse();
|
||||
parity.forEach((e: any, i: any , a: any) => {
|
||||
a[i] = parseInt(e);
|
||||
});
|
||||
parity = parity.toString(2).split("").reverse();
|
||||
parity.forEach((e: any, i: any, a: any) => {
|
||||
a[i] = parseInt(e);
|
||||
});
|
||||
|
||||
/* Set the parity bits accordingly */
|
||||
for(let i = 0; i < m; i++) {
|
||||
enc[2 ** i] = parity[i] ? 1 : 0;
|
||||
}
|
||||
/* Set the parity bits accordingly */
|
||||
for (let i = 0; i < m; i++) {
|
||||
enc[2 ** i] = parity[i] ? 1 : 0;
|
||||
}
|
||||
|
||||
parity = 0;
|
||||
/* Figure out the overall parity for the entire block */
|
||||
for(let i = 0; i < n; i++) {
|
||||
if(enc[i]) {
|
||||
parity++;
|
||||
}
|
||||
}
|
||||
parity = 0;
|
||||
/* Figure out the overall parity for the entire block */
|
||||
for (let i = 0; i < n; i++) {
|
||||
if (enc[i]) {
|
||||
parity++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Finally set the overall parity bit */
|
||||
enc[0] = parity % 2 == 0 ? 0 : 1;
|
||||
/* Finally set the overall parity bit */
|
||||
enc[0] = parity % 2 == 0 ? 0 : 1;
|
||||
|
||||
return enc.join("");
|
||||
return enc.join("");
|
||||
}
|
||||
|
||||
export function HammingDecode(data: string): number {
|
||||
let err = 0;
|
||||
const bits: Array<number> = [];
|
||||
let err = 0;
|
||||
const bits: Array<number> = [];
|
||||
|
||||
/* TODO why not just work with an array of digits from the start? */
|
||||
for(const i in data.split("")) {
|
||||
const bit = parseInt(data[i]);
|
||||
bits[i] = bit;
|
||||
/* TODO why not just work with an array of digits from the start? */
|
||||
for (const i in data.split("")) {
|
||||
const bit = parseInt(data[i]);
|
||||
bits[i] = bit;
|
||||
|
||||
if(bit) {
|
||||
err ^= +i;
|
||||
}
|
||||
}
|
||||
if (bit) {
|
||||
err ^= +i;
|
||||
}
|
||||
}
|
||||
|
||||
/* If err != 0 then it spells out the index of the bit that was flipped */
|
||||
if(err) {
|
||||
/* Flip to correct */
|
||||
bits[err] = bits[err] ? 0 : 1;
|
||||
}
|
||||
/* If err != 0 then it spells out the index of the bit that was flipped */
|
||||
if (err) {
|
||||
/* Flip to correct */
|
||||
bits[err] = bits[err] ? 0 : 1;
|
||||
}
|
||||
|
||||
/* Now we have to read the message, bit 0 is unused (it's the overall parity bit
|
||||
* which we don't care about). Each bit at an index that is a power of 2 is
|
||||
* a parity bit and not part of the actual message. */
|
||||
/* Now we have to read the message, bit 0 is unused (it's the overall parity bit
|
||||
* which we don't care about). Each bit at an index that is a power of 2 is
|
||||
* a parity bit and not part of the actual message. */
|
||||
|
||||
let ans = '';
|
||||
let ans = "";
|
||||
|
||||
for(let i = 1; i < bits.length; i++) {
|
||||
/* i is not a power of two so it's not a parity bit */
|
||||
if((i & (i - 1)) != 0) {
|
||||
ans += bits[i];
|
||||
}
|
||||
}
|
||||
for (let i = 1; i < bits.length; i++) {
|
||||
/* i is not a power of two so it's not a parity bit */
|
||||
if ((i & (i - 1)) != 0) {
|
||||
ans += bits[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* TODO to avoid ambiguity about endianness why not let the player return the extracted (and corrected)
|
||||
* data bits, rather than guessing at how to convert it to a decimal string? */
|
||||
return parseInt(ans, 2);
|
||||
/* TODO to avoid ambiguity about endianness why not let the player return the extracted (and corrected)
|
||||
* data bits, rather than guessing at how to convert it to a decimal string? */
|
||||
return parseInt(ans, 2);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user