Do some work on the CPU, assembler still needs update
This commit is contained in:
525
assembler/assembler.c
Normal file
525
assembler/assembler.c
Normal file
@@ -0,0 +1,525 @@
|
||||
//
|
||||
// Created by bruno on 1.2.2025.
|
||||
//
|
||||
|
||||
#include "assembler.h"
|
||||
|
||||
Label labels[MAX_LABELS];
|
||||
int labelCount = 0;
|
||||
|
||||
//
|
||||
// Helper functions for string manipulation
|
||||
//
|
||||
void trim(char *s) {
|
||||
// Remove leading whitespace
|
||||
while (isspace((unsigned char) *s)) s++;
|
||||
|
||||
// Remove trailing whitespace
|
||||
char *end = s + strlen(s) - 1;
|
||||
while (end > s && isspace((unsigned char) *end)) {
|
||||
*end = '\0';
|
||||
end--;
|
||||
}
|
||||
}
|
||||
|
||||
// Look up a label by name; returns -1 if not found.
|
||||
int lookupLabel(const char *name) {
|
||||
for (int i = 0; i < labelCount; i++) {
|
||||
if (strcmp(labels[i].name, name) == 0)
|
||||
return labels[i].address;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Add a label to the table
|
||||
void addLabel(const char *name, int address) {
|
||||
if (labelCount >= MAX_LABELS) {
|
||||
fprintf(stderr, "Too many labels!\n");
|
||||
exit(1);
|
||||
}
|
||||
strncpy(labels[labelCount].name, name, sizeof(labels[labelCount].name));
|
||||
labels[labelCount].address = address;
|
||||
labelCount++;
|
||||
}
|
||||
|
||||
//
|
||||
// Parse a register string (e.g., "R0", "R1", etc.) and return it's number.
|
||||
// Returns -1 on error.
|
||||
int parseRegister(const char *token) {
|
||||
if (token[0] == 'R' || token[0] == 'r') {
|
||||
int reg = atoi(token + 1);
|
||||
if (reg >= 0 && reg < REG_COUNT)
|
||||
return reg;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Parse an immediate value (supports decimal and 0x... hexadecimal)
|
||||
uint8_t parseImmediate(const char *token) {
|
||||
int value;
|
||||
if (strlen(token) > 2 && token[0] == '0' && (token[1] == 'x' || token[1] == 'X'))
|
||||
sscanf(token, "%x", &value);
|
||||
else
|
||||
sscanf(token, "%d", &value);
|
||||
return (uint8_t) value;
|
||||
}
|
||||
|
||||
void toUpperCase(char *string) {
|
||||
while (*string) {
|
||||
if (*string > 0x60 && *string < 0x7b) {
|
||||
(*string) -= 0x20;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Map an instruction mnemonic (string) to its opcode value and expected operand types.
|
||||
// For simplicity, we will return the opcode value and then in our parser we’ll decide how many operands to expect.
|
||||
// (In a full assembler you might use a more sophisticated data structure.)
|
||||
//
|
||||
int getOpcode(char *mnemonic) {
|
||||
toUpperCase(mnemonic);
|
||||
if (strcmp(mnemonic, "BRK") == 0)
|
||||
return BRK;
|
||||
else if (strcmp(mnemonic, "NOP") == 0)
|
||||
return NOP;
|
||||
else if (strcmp(mnemonic, "MOV") == 0)
|
||||
return -2; // Special case: we must decide between MOV_RN_IMM, MOV_RN_RM, MOV_RN_ADDR, MOV_ADDR_RN
|
||||
else if (strcmp(mnemonic, "SWAP") == 0)
|
||||
return SWAP;
|
||||
else if (strcmp(mnemonic, "SWAPN") == 0)
|
||||
return SWAPN;
|
||||
else if (strcmp(mnemonic, "ADD") == 0)
|
||||
return -3; // Special: decide between ADD_RN_RM and ADD_RN_IMM
|
||||
else if (strcmp(mnemonic, "SUB") == 0)
|
||||
return -4; // Special: decide between SUB_RN_RM and SUB_RN_IMM
|
||||
else if (strcmp(mnemonic, "MUL") == 0)
|
||||
return -5; // Special: decide between MUL_RN_RM and MUL_RN_IMM
|
||||
else if (strcmp(mnemonic, "DIV") == 0)
|
||||
return -6; // Special: decide between DIV_RN_RM and DIV_RN_IMM
|
||||
else if (strcmp(mnemonic, "MOD") == 0)
|
||||
return -7; // Special: decide between MOD_RN_RM and MOD_RN_IMM
|
||||
else if (strcmp(mnemonic, "NEG") == 0)
|
||||
return NEG_RN;
|
||||
else if (strcmp(mnemonic, "AND") == 0)
|
||||
return -8; // Special: decide between AND_RN_RM and AND_RN_IMM
|
||||
else if (strcmp(mnemonic, "OR") == 0)
|
||||
return -9; // Special: decide between OR_RN_RM and OR_RN_IMM
|
||||
else if (strcmp(mnemonic, "XOR") == 0)
|
||||
return -10; // Special: decide between XOR_RN_RM and XOR_RN_IMM
|
||||
else if (strcmp(mnemonic, "NOT") == 0)
|
||||
return NOT_RN;
|
||||
else if (strcmp(mnemonic, "SHL") == 0)
|
||||
return SHL_RN_IMM;
|
||||
else if (strcmp(mnemonic, "SHR") == 0)
|
||||
return SHR_RN_IMM;
|
||||
else if (strcmp(mnemonic, "SAR") == 0)
|
||||
return SAR_RN_IMM;
|
||||
else if (strcmp(mnemonic, "JMP") == 0)
|
||||
return JMP;
|
||||
else if (strcmp(mnemonic, "CMP") == 0)
|
||||
return CMP;
|
||||
else if (strcmp(mnemonic, "JE") == 0)
|
||||
return JE;
|
||||
else if (strcmp(mnemonic, "JNE") == 0)
|
||||
return JNE;
|
||||
else if (strcmp(mnemonic, "JG") == 0)
|
||||
return JG;
|
||||
else if (strcmp(mnemonic, "JL") == 0)
|
||||
return JL;
|
||||
else if (strcmp(mnemonic, "JGE") == 0)
|
||||
return JGE;
|
||||
else if (strcmp(mnemonic, "JLE") == 0)
|
||||
return JLE;
|
||||
else if (strcmp(mnemonic, "CALL") == 0)
|
||||
return CALL;
|
||||
else if (strcmp(mnemonic, "RET") == 0)
|
||||
return RET;
|
||||
else if (strcmp(mnemonic, "PUSH") == 0)
|
||||
return PUSH;
|
||||
else if (strcmp(mnemonic, "POP") == 0)
|
||||
return POP;
|
||||
else if (strcmp(mnemonic, "PUSHF") == 0)
|
||||
return PUSHF;
|
||||
else if (strcmp(mnemonic, "POPF") == 0)
|
||||
return POPF;
|
||||
else {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// In this simple assembler, some instructions share a mnemonic, and we must choose the correct opcode
|
||||
// based on the type of the operand (register vs. immediate vs. memory).
|
||||
// The following helper functions decide that, given two operands (as strings).
|
||||
//
|
||||
// For example, "MOV Rn, 42" should choose MOV_RN_IMM, while "MOV Rn, Rm" should choose MOV_RN_RM.
|
||||
// We assume that memory addresses are written in square brackets, e.g. "[123]".
|
||||
//
|
||||
int resolveMOV(const char *dest, const char *src) {
|
||||
// If dest starts with '[' then it is a memory destination.
|
||||
if (dest[0] == '[') return MOV_ADDR_RN; // actually, MOV [Addr], Rn expects Rn in second operand
|
||||
// Otherwise, dest is a register.
|
||||
// Now, check src:
|
||||
if (src[0] == 'R' || src[0] == 'r') {
|
||||
return MOV_RN_RM;
|
||||
} else if (src[0] == '[') {
|
||||
return MOV_RN_ADDR;
|
||||
} else {
|
||||
return MOV_RN_IMM;
|
||||
}
|
||||
}
|
||||
|
||||
int resolveALU(int baseOpcode, const char *src) {
|
||||
// baseOpcode is one of our special negative values for ADD, SUB, etc.
|
||||
if (src[0] == 'R' || src[0] == 'r')
|
||||
switch (baseOpcode) {
|
||||
case -3:
|
||||
return ADD_RN_RM;
|
||||
case -4:
|
||||
return SUB_RN_RM;
|
||||
case -5:
|
||||
return MUL_RN_RM;
|
||||
case -6:
|
||||
return DIV_RN_RM;
|
||||
case -7:
|
||||
return MOD_RN_RM;
|
||||
case -8:
|
||||
return AND_RN_RM;
|
||||
case -9:
|
||||
return OR_RN_RM;
|
||||
case -10:
|
||||
return XOR_RN_RM;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
else
|
||||
switch (baseOpcode) {
|
||||
case -3:
|
||||
return ADD_RN_IMM;
|
||||
case -4:
|
||||
return SUB_RN_IMM;
|
||||
case -5:
|
||||
return MUL_RN_IMM;
|
||||
case -6:
|
||||
return DIV_RN_IMM;
|
||||
case -7:
|
||||
return MOD_RN_IMM;
|
||||
case -8:
|
||||
return AND_RN_IMM;
|
||||
case -9:
|
||||
return OR_RN_IMM;
|
||||
case -10:
|
||||
return XOR_RN_IMM;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Reads a single line from the source string.
|
||||
const char *readLine(const char *source, char *buffer, size_t maxLen) {
|
||||
size_t i = 0;
|
||||
while (*source && *source != '\n' && i < maxLen - 1) {
|
||||
buffer[i++] = *source++;
|
||||
}
|
||||
buffer[i] = '\0';
|
||||
return (*source == '\n') ? source + 1 : source;
|
||||
}
|
||||
|
||||
//
|
||||
// The first pass scans the assembly source file to record all labels and their addresses.
|
||||
// The address is simply the offset into the output machine code buffer.
|
||||
// For this example, every instruction is assumed to have a fixed length (opcode plus operand bytes).
|
||||
//
|
||||
int firstPass(const char *source) {
|
||||
char line[MAX_LINE_LENGTH];
|
||||
int addr = 0;
|
||||
const char *ptr = source;
|
||||
|
||||
while (*ptr) {
|
||||
// Read a line from the source string
|
||||
ptr = readLine(ptr, line, sizeof(line));
|
||||
trim(line);
|
||||
|
||||
if (line[0] == '\0' || line[0] == ';' || line[0] == '#')
|
||||
continue; // Skip empty or comment lines
|
||||
|
||||
char *colon = strchr(line, ':');
|
||||
if (colon != NULL) {
|
||||
*colon = '\0';
|
||||
trim(line);
|
||||
addLabel(line, addr);
|
||||
|
||||
char *rest = colon + 1;
|
||||
trim(rest);
|
||||
if (strlen(rest) == 0)
|
||||
continue;
|
||||
strcpy(line, rest);
|
||||
}
|
||||
|
||||
// For simplicity, we assume each instruction (with its operands) takes a fixed number of bytes.
|
||||
// Here we calculate the number of bytes by looking at the opcode mnemonic.
|
||||
// (A more robust approach would have a table for instruction sizes.)
|
||||
char mnemonic[32];
|
||||
sscanf(line, "%31s", mnemonic);
|
||||
|
||||
int opcode = getOpcode(mnemonic);
|
||||
if (opcode == -2) {
|
||||
// MOV: two operands separated by comma
|
||||
// e.g. MOV R1, 42
|
||||
// We add 3 bytes: opcode, operand1, operand2.
|
||||
addr += 3;
|
||||
} else if (opcode == -3 || opcode == -4 || opcode == -5 || opcode == -6 ||
|
||||
opcode == -7 || opcode == -8 || opcode == -9 || opcode == -10) {
|
||||
// ALU instructions with two operands: 3 bytes.
|
||||
addr += 3;
|
||||
} else if (opcode == NEG_RN || opcode == SWAPN || opcode == NOT_RN) {
|
||||
// One operand: 2 bytes.
|
||||
addr += 2;
|
||||
} else if (opcode == SWAP || opcode == CMP) {
|
||||
// Two operands: 3 bytes.
|
||||
addr += 3;
|
||||
} else if (opcode == SHL_RN_IMM || opcode == SHR_RN_IMM ||
|
||||
opcode == SAR_RN_IMM) {
|
||||
addr += 3;
|
||||
} else if (opcode == JMP || opcode == JE || opcode == JNE ||
|
||||
opcode == JG || opcode == JL || opcode == JGE || opcode == JLE ||
|
||||
opcode == CALL) {
|
||||
// Jump or call: 2 bytes (opcode and one byte address/immediate).
|
||||
addr += 2;
|
||||
} else if (opcode == RET || opcode == PUSHF || opcode == POPF) {
|
||||
addr += 1;
|
||||
} else if (opcode == PUSH || opcode == POP) {
|
||||
addr += 2;
|
||||
} else {
|
||||
// For other instructions, we assume 3 bytes.
|
||||
addr += 3;
|
||||
}
|
||||
}
|
||||
return addr;
|
||||
}
|
||||
|
||||
//
|
||||
// The second pass actually translates the assembly instructions to machine code.
|
||||
// The machine code is written into the provided buffer. (It must be large enough.)
|
||||
//
|
||||
int secondPass(const char *source, uint8_t *code) {
|
||||
char line[MAX_LINE_LENGTH];
|
||||
int addr = 0;
|
||||
const char *ptr = source;
|
||||
|
||||
while (*ptr) {
|
||||
ptr = readLine(ptr, line, sizeof(line));
|
||||
trim(line);
|
||||
|
||||
if (line[0] == '\0' || line[0] == ';' || line[0] == '#')
|
||||
continue;
|
||||
|
||||
char *colon = strchr(line, ':');
|
||||
if (colon != NULL) {
|
||||
*colon = ' ';
|
||||
}
|
||||
|
||||
if (strlen(line) == 0)
|
||||
continue;
|
||||
|
||||
char *token = strtok(line, " ,");
|
||||
if (!token)
|
||||
continue;
|
||||
|
||||
char mnemonic[32];
|
||||
strncpy(mnemonic, token, sizeof(mnemonic));
|
||||
int opcode = getOpcode(mnemonic);
|
||||
code[addr++] = opcode;
|
||||
|
||||
// Handle instructions that need operand disambiguation.
|
||||
if (strcmp(mnemonic, "MOV") == 0) {
|
||||
// Get first operand.
|
||||
char *dest = strtok(NULL, " ,");
|
||||
char *src = strtok(NULL, " ,");
|
||||
if (!dest || !src) {
|
||||
fprintf(stderr, "Error: MOV requires two operands.\n");
|
||||
exit(1);
|
||||
}
|
||||
int opcode2 = resolveMOV(dest, src);
|
||||
code[addr++] = opcode2;
|
||||
// For the MOV instructions we decide that:
|
||||
// - For MOV_RN_IMM: operand bytes: [register, immediate]
|
||||
// - For MOV_RN_RM: operand bytes: [dest register, src register]
|
||||
// - For MOV_RN_ADDR: operand bytes: [dest register, address]
|
||||
// - For MOV_ADDR_RN: operand bytes: [address, register]
|
||||
if (opcode2 == MOV_RN_IMM) {
|
||||
int reg = parseRegister(dest);
|
||||
uint8_t imm = parseImmediate(src);
|
||||
code[addr++] = reg;
|
||||
code[addr++] = imm;
|
||||
} else if (opcode2 == MOV_RN_RM) {
|
||||
int regDest = parseRegister(dest);
|
||||
int regSrc = parseRegister(src);
|
||||
code[addr++] = regDest;
|
||||
code[addr++] = regSrc;
|
||||
} else if (opcode2 == MOV_RN_ADDR) {
|
||||
// src is memory reference like "[123]"
|
||||
int regDest = parseRegister(dest);
|
||||
// Remove the brackets.
|
||||
char addrStr[32];
|
||||
strncpy(addrStr, src + 1, strlen(src) - 2);
|
||||
addrStr[strlen(src) - 2] = '\0';
|
||||
uint8_t memAddr = parseImmediate(addrStr);
|
||||
code[addr++] = regDest;
|
||||
code[addr++] = memAddr;
|
||||
} else if (opcode2 == MOV_ADDR_RN) {
|
||||
// dest is a memory reference, src is a register.
|
||||
// Remove brackets from dest.
|
||||
char addrStr[32];
|
||||
strncpy(addrStr, dest + 1, strlen(dest) - 2);
|
||||
addrStr[strlen(dest) - 2] = '\0';
|
||||
uint8_t memAddr = parseImmediate(addrStr);
|
||||
int regSrc = parseRegister(src);
|
||||
code[addr++] = memAddr;
|
||||
code[addr++] = regSrc;
|
||||
}
|
||||
} else if (strcmp(mnemonic, "ADD") == 0 ||
|
||||
strcmp(mnemonic, "SUB") == 0 ||
|
||||
strcmp(mnemonic, "MUL") == 0 ||
|
||||
strcmp(mnemonic, "DIV") == 0 ||
|
||||
strcmp(mnemonic, "MOD") == 0 ||
|
||||
strcmp(mnemonic, "AND") == 0 ||
|
||||
strcmp(mnemonic, "OR") == 0 ||
|
||||
strcmp(mnemonic, "XOR") == 0) {
|
||||
// ALU instructions with two operands.
|
||||
char *dest = strtok(NULL, " ,");
|
||||
char *src = strtok(NULL, " ,");
|
||||
if (!dest || !src) {
|
||||
fprintf(stderr, "Error: %s requires two operands.\n", mnemonic);
|
||||
exit(1);
|
||||
}
|
||||
int baseOpcode;
|
||||
if (strcmp(mnemonic, "ADD") == 0) baseOpcode = -3;
|
||||
else if (strcmp(mnemonic, "SUB") == 0) baseOpcode = -4;
|
||||
else if (strcmp(mnemonic, "MUL") == 0) baseOpcode = -5;
|
||||
else if (strcmp(mnemonic, "DIV") == 0) baseOpcode = -6;
|
||||
else if (strcmp(mnemonic, "MOD") == 0) baseOpcode = -7;
|
||||
else if (strcmp(mnemonic, "AND") == 0) baseOpcode = -8;
|
||||
else if (strcmp(mnemonic, "OR") == 0) baseOpcode = -9;
|
||||
else if (strcmp(mnemonic, "XOR") == 0) baseOpcode = -10;
|
||||
else baseOpcode = -1;
|
||||
int opcode3 = resolveALU(baseOpcode, src);
|
||||
code[addr++] = opcode3;
|
||||
int regDest = parseRegister(dest);
|
||||
code[addr++] = regDest;
|
||||
// For a register source, encode the register; for an immediate, encode the value.
|
||||
if (src[0] == 'R' || src[0] == 'r') {
|
||||
int regSrc = parseRegister(src);
|
||||
code[addr++] = regSrc;
|
||||
} else {
|
||||
uint8_t imm = parseImmediate(src);
|
||||
code[addr++] = imm;
|
||||
}
|
||||
} else if (strcmp(mnemonic, "NEG") == 0 ||
|
||||
strcmp(mnemonic, "SWAPN") == 0 ||
|
||||
strcmp(mnemonic, "NOT") == 0) {
|
||||
// One operand instructions.
|
||||
char *op = strtok(NULL, " ,");
|
||||
if (!op) {
|
||||
fprintf(stderr, "Error: %s requires one operand.\n", mnemonic);
|
||||
exit(1);
|
||||
}
|
||||
int opcode4 = getOpcode(mnemonic);
|
||||
code[addr++] = opcode4;
|
||||
int reg = parseRegister(op);
|
||||
code[addr++] = reg;
|
||||
} else if (strcmp(mnemonic, "SWAP") == 0 || strcmp(mnemonic, "CMP") == 0) {
|
||||
// Two operand instructions: both registers.
|
||||
char *op1 = strtok(NULL, " ,");
|
||||
char *op2 = strtok(NULL, " ,");
|
||||
if (!op1 || !op2) {
|
||||
fprintf(stderr, "Error: %s requires two operands.\n", mnemonic);
|
||||
exit(1);
|
||||
}
|
||||
int opcode5 = getOpcode(mnemonic);
|
||||
code[addr++] = opcode5;
|
||||
int r1 = parseRegister(op1);
|
||||
int r2 = parseRegister(op2);
|
||||
code[addr++] = r1;
|
||||
code[addr++] = r2;
|
||||
} else if (strcmp(mnemonic, "SHL") == 0 ||
|
||||
strcmp(mnemonic, "SHR") == 0 ||
|
||||
strcmp(mnemonic, "SAR") == 0 ||
|
||||
strcmp(mnemonic, "SHRS") == 0) {
|
||||
// Shift instructions: one register operand and one immediate.
|
||||
char *regToken = strtok(NULL, " ,");
|
||||
char *immToken = strtok(NULL, " ,");
|
||||
if (!regToken || !immToken) {
|
||||
fprintf(stderr, "Error: %s requires two operands.\n", mnemonic);
|
||||
exit(1);
|
||||
}
|
||||
int opcode6 = getOpcode(mnemonic);
|
||||
code[addr++] = opcode6;
|
||||
int reg = parseRegister(regToken);
|
||||
code[addr++] = reg;
|
||||
uint8_t imm = parseImmediate(immToken);
|
||||
code[addr++] = imm;
|
||||
} else if (strcmp(mnemonic, "JMP") == 0 ||
|
||||
strcmp(mnemonic, "JE") == 0 ||
|
||||
strcmp(mnemonic, "JNE") == 0 ||
|
||||
strcmp(mnemonic, "JG") == 0 ||
|
||||
strcmp(mnemonic, "JL") == 0 ||
|
||||
strcmp(mnemonic, "JGE") == 0 ||
|
||||
strcmp(mnemonic, "JLE") == 0 ||
|
||||
strcmp(mnemonic, "CALL") == 0) {
|
||||
// Jump instructions: one operand which may be a label or an immediate address.
|
||||
char *operand = strtok(NULL, " ,");
|
||||
if (!operand) {
|
||||
fprintf(stderr, "Error: %s requires an operand.\n", mnemonic);
|
||||
exit(1);
|
||||
}
|
||||
int opcode7 = getOpcode(mnemonic);
|
||||
code[addr++] = opcode7;
|
||||
// If the operand is not a number, assume it is a label.
|
||||
if (!isdigit(operand[0])) {
|
||||
int labelAddr = lookupLabel(operand);
|
||||
if (labelAddr < 0) {
|
||||
fprintf(stderr, "Error: undefined label '%s'\n", operand);
|
||||
exit(1);
|
||||
}
|
||||
code[addr++] = (uint8_t) labelAddr;
|
||||
} else {
|
||||
uint8_t imm = parseImmediate(operand);
|
||||
code[addr++] = imm;
|
||||
}
|
||||
} else if (strcmp(mnemonic, "RET") == 0 ||
|
||||
strcmp(mnemonic, "PUSHF") == 0 ||
|
||||
strcmp(mnemonic, "POPF") == 0) {
|
||||
// Instructions with no operand.
|
||||
int opcode8 = getOpcode(mnemonic);
|
||||
code[addr++] = opcode8;
|
||||
} else if (strcmp(mnemonic, "PUSH") == 0 ||
|
||||
strcmp(mnemonic, "POP") == 0) {
|
||||
// One operand (a register)
|
||||
char *regToken = strtok(NULL, " ,");
|
||||
if (!regToken) {
|
||||
fprintf(stderr, "Error: %s requires a register operand.\n", mnemonic);
|
||||
exit(1);
|
||||
}
|
||||
int opcode9 = getOpcode(mnemonic);
|
||||
code[addr++] = opcode9;
|
||||
int reg = parseRegister(regToken);
|
||||
code[addr++] = reg;
|
||||
} else {
|
||||
fprintf(stderr, "Error: Unknown instruction '%s'\n", mnemonic);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
return addr;
|
||||
}
|
||||
|
||||
void completePass(const char *input, CPU *cpu) {
|
||||
// First pass: determine label addresses.
|
||||
firstPass(input);
|
||||
|
||||
memset(cpu->memory, 0, MEM_SIZE);
|
||||
|
||||
// Second pass: generate machine code.
|
||||
secondPass(input, cpu->memory);
|
||||
}
|
Reference in New Issue
Block a user