Do some stuff

This commit is contained in:
2025-02-05 20:32:36 +01:00
parent 2daec68484
commit 9837729656
7 changed files with 630 additions and 396 deletions

View File

@@ -56,12 +56,33 @@ int parseRegister(const char *token) {
// Parse an immediate value (supports decimal and 0x... hexadecimal) // Parse an immediate value (supports decimal and 0x... hexadecimal)
uint8_t parseImmediate(const char *token) { uint8_t parseImmediate(const char *token) {
int value; int16_t value = 0; // Temporary variable as signed int16_t
if (strlen(token) > 2 && token[0] == '0' && (token[1] == 'x' || token[1] == 'X'))
sscanf(token, "%x", &value); // Check if the value starts with '0x' or '0X' for hexadecimal
else if (strlen(token) > 2 && token[0] == '0' && (token[1] == 'x' || token[1] == 'X')) {
sscanf(token, "%d", &value); // Handle hexadecimal: Check for signed hex (e.g. -0x1F4, +0x1F4)
return (uint8_t) value; if (token[2] == '+' || token[2] == '-') {
sscanf(token, "%hx", &value); // Hexadecimal signed (same as unsigned in sscanf)
if (token[2] == '-') value = -value; // Adjust sign if negative
} else {
// Hexadecimal unsigned value
sscanf(token, "%hx", &value);
}
} else {
// Check if the value has a signed prefix (+ or -) for decimal
if (token[0] == '+' || token[0] == '-') {
sscanf(token, "%hd", &value); // Signed decimal
} else {
// Unsigned decimal value
unsigned int unsigned_value;
sscanf(token, "%u", &unsigned_value);
value = (int16_t) unsigned_value; // Cast unsigned to signed
}
}
// Convert signed 16-bit value to unsigned 8-bit value
// Ensure the value fits within the range of uint8_t (0 to 255)
return (uint8_t) (value & 0xFF); // Mask with 0xFF to discard upper bits
} }
void toUpperCase(char *string) { void toUpperCase(char *string) {
@@ -79,10 +100,10 @@ void toUpperCase(char *string) {
// //
int getOpcode(char *mnemonic) { int getOpcode(char *mnemonic) {
toUpperCase(mnemonic); toUpperCase(mnemonic);
if (strcmp(mnemonic, "BRK") == 0) if (strcmp(mnemonic, "NOP") == 0)
return BRK;
else if (strcmp(mnemonic, "NOP") == 0)
return NOP; return NOP;
else if (strcmp(mnemonic, "BRK") == 0)
return BRK;
else if (strcmp(mnemonic, "MOV") == 0) else if (strcmp(mnemonic, "MOV") == 0)
return -2; // Special case: we must decide between MOV_RN_IMM, MOV_RN_RM, MOV_RN_ADDR, MOV_ADDR_RN return -2; // Special case: we must decide between MOV_RN_IMM, MOV_RN_RM, MOV_RN_ADDR, MOV_ADDR_RN
else if (strcmp(mnemonic, "SWAP") == 0) else if (strcmp(mnemonic, "SWAP") == 0)
@@ -116,13 +137,21 @@ int getOpcode(char *mnemonic) {
else if (strcmp(mnemonic, "SAR") == 0) else if (strcmp(mnemonic, "SAR") == 0)
return SAR_RN_IMM; return SAR_RN_IMM;
else if (strcmp(mnemonic, "JMP") == 0) else if (strcmp(mnemonic, "JMP") == 0)
return JMP; return -11; //Special: if + or - present choose JMP_REL, otherwise JMP
else if (strcmp(mnemonic, "INC") == 0)
return -12; //Special: decide between INC_RN and INC_ADDR
else if (strcmp(mnemonic, "DEC") == 0)
return -13; //Special: decide between DEC_RN and DEC_ADDR
else if (strcmp(mnemonic, "CMP") == 0) else if (strcmp(mnemonic, "CMP") == 0)
return CMP; return CMP;
else if (strcmp(mnemonic, "JE") == 0) else if (strcmp(mnemonic, "JE") == 0)
return JE; return JE;
else if (strcmp(mnemonic, "JNE") == 0) else if (strcmp(mnemonic, "JNE") == 0)
return JNE; return JNE;
else if (strcmp(mnemonic, "JMPBS") == 0)
return -14; //Special: decide between JMP_BIT_SET_RN and JMP_BIT_SET_ADDR
else if (strcmp(mnemonic, "JMPBC") == 0)
return -15; //Special: decide between JMP_BIT_CLEAR_RN and JMP_BIT_CLEAR_ADDR
else if (strcmp(mnemonic, "JG") == 0) else if (strcmp(mnemonic, "JG") == 0)
return JG; return JG;
else if (strcmp(mnemonic, "JL") == 0) else if (strcmp(mnemonic, "JL") == 0)
@@ -135,14 +164,6 @@ int getOpcode(char *mnemonic) {
return CALL; return CALL;
else if (strcmp(mnemonic, "RET") == 0) else if (strcmp(mnemonic, "RET") == 0)
return RET; return RET;
else if (strcmp(mnemonic, "PUSH") == 0)
return PUSH;
else if (strcmp(mnemonic, "POP") == 0)
return POP;
else if (strcmp(mnemonic, "PUSHF") == 0)
return PUSHF;
else if (strcmp(mnemonic, "POPF") == 0)
return POPF;
else { else {
return -1; return -1;
} }
@@ -172,7 +193,7 @@ int resolveMOV(const char *dest, const char *src) {
int resolveALU(int baseOpcode, const char *src) { int resolveALU(int baseOpcode, const char *src) {
// baseOpcode is one of our special negative values for ADD, SUB, etc. // baseOpcode is one of our special negative values for ADD, SUB, etc.
if (src[0] == 'R' || src[0] == 'r') if (src[0] == 'R' || src[0] == 'r') {
switch (baseOpcode) { switch (baseOpcode) {
case -3: case -3:
return ADD_RN_RM; return ADD_RN_RM;
@@ -190,10 +211,25 @@ int resolveALU(int baseOpcode, const char *src) {
return OR_RN_RM; return OR_RN_RM;
case -10: case -10:
return XOR_RN_RM; return XOR_RN_RM;
case -12:
return INC_RN;
case -13:
return DEC_RN;
case -14:
return JMP_BIT_SET_RN;
case -15:
return JMP_BIT_CLEAR_RN;
default: default:
return -1; return -1;
} }
else } else if (src[0] == '+' || src[0] == '-') {
switch (baseOpcode) {
case -11:
return JMP_REL;
default:
return -1;
}
} else {
switch (baseOpcode) { switch (baseOpcode) {
case -3: case -3:
return ADD_RN_IMM; return ADD_RN_IMM;
@@ -211,9 +247,20 @@ int resolveALU(int baseOpcode, const char *src) {
return OR_RN_IMM; return OR_RN_IMM;
case -10: case -10:
return XOR_RN_IMM; return XOR_RN_IMM;
case -11:
return JMP;
case -12:
return INC_ADDR;
case -13:
return DEC_ADDR;
case -14:
return JMP_BIT_SET_ADDR;
case -15:
return JMP_BIT_CLEAR_ADDR;
default: default:
return -1; return -1;
} }
}
} }
// Reads a single line from the source string. // Reads a single line from the source string.
@@ -237,19 +284,19 @@ int firstPass(const char *source) {
const char *ptr = source; const char *ptr = source;
while (*ptr) { while (*ptr) {
// Read a line from the source string
ptr = readLine(ptr, line, sizeof(line)); ptr = readLine(ptr, line, sizeof(line));
trim(line); trim(line);
// Skip blank lines or comments.
if (line[0] == '\0' || line[0] == ';' || line[0] == '#') if (line[0] == '\0' || line[0] == ';' || line[0] == '#')
continue; // Skip empty or comment lines continue;
// Process labels.
char *colon = strchr(line, ':'); char *colon = strchr(line, ':');
if (colon != NULL) { if (colon != NULL) {
*colon = '\0'; *colon = '\0';
trim(line); trim(line);
addLabel(line, addr); addLabel(line, addr);
char *rest = colon + 1; char *rest = colon + 1;
trim(rest); trim(rest);
if (strlen(rest) == 0) if (strlen(rest) == 0)
@@ -257,44 +304,125 @@ int firstPass(const char *source) {
strcpy(line, rest); strcpy(line, rest);
} }
// For simplicity, we assume each instruction (with its operands) takes a fixed number of bytes. // Parse the mnemonic and operands.
// Here we calculate the number of bytes by looking at the opcode mnemonic. char mnemonic[32], operand1[64], operand2[64];
// (A more robust approach would have a table for instruction sizes.) operand1[0] = '\0';
char mnemonic[32]; operand2[0] = '\0';
sscanf(line, "%31s", mnemonic); sscanf(line, "%31s %63[^,], %63s", mnemonic, operand1, operand2);
int opcode = getOpcode(mnemonic); // Use the mapper to get a base opcode.
if (opcode == -2) { int baseOpcode = getOpcode(mnemonic);
// MOV: two operands separated by comma if (baseOpcode == -1) {
// e.g. MOV R1, 42 printf("Unknown instruction: %s\n", mnemonic);
// We add 3 bytes: opcode, operand1, operand2. continue;
addr += 3;
} else if (opcode == -3 || opcode == -4 || opcode == -5 || opcode == -6 ||
opcode == -7 || opcode == -8 || opcode == -9 || opcode == -10) {
// ALU instructions with two operands: 3 bytes.
addr += 3;
} else if (opcode == NEG_RN || opcode == SWAPN || opcode == NOT_RN) {
// One operand: 2 bytes.
addr += 2;
} else if (opcode == SWAP || opcode == CMP) {
// Two operands: 3 bytes.
addr += 3;
} else if (opcode == SHL_RN_IMM || opcode == SHR_RN_IMM ||
opcode == SAR_RN_IMM) {
addr += 3;
} else if (opcode == JMP || opcode == JE || opcode == JNE ||
opcode == JG || opcode == JL || opcode == JGE || opcode == JLE ||
opcode == CALL) {
// Jump or call: 2 bytes (opcode and one byte address/immediate).
addr += 2;
} else if (opcode == RET || opcode == PUSHF || opcode == POPF) {
addr += 1;
} else if (opcode == PUSH || opcode == POP) {
addr += 2;
} else {
// For other instructions, we assume 3 bytes.
addr += 3;
} }
int size = 0; // Instruction size in bytes.
if (baseOpcode == -2) {
// MOV instruction requires further resolution.
int resolvedOpcode = resolveMOV(operand1, operand2);
if (resolvedOpcode == MOV_RN_IMM || resolvedOpcode == MOV_RN_RM) {
size = 3; // opcode (1) + reg (1) + immediate or register (1)
} else if (resolvedOpcode == MOV_RN_ADDR || resolvedOpcode == MOV_ADDR_RN) {
size = 6; // opcode (1) + one operand as register (1) and one 32-bit address (4) [+ padding if needed]
} else {
size = 3; // fallback
}
} else if (baseOpcode < 0) {
// Ambiguous instructions that use resolveALU.
// For JMP and jump-bit instructions, the jump target is in operand1.
if (baseOpcode == -11) {
// JMP: if operand1 starts with '+' or '-', it's relative.
if (operand1[0] == '+' || operand1[0] == '-') {
// resolve as JMP_REL.
int resolvedOpcode = resolveALU(baseOpcode, operand1);
size = 2; // opcode (1) + 1-byte relative offset (1)
} else {
int resolvedOpcode = resolveALU(baseOpcode, operand1);
size = 5; // opcode (1) + 32-bit absolute address (4)
}
} else if (baseOpcode == -14 || baseOpcode == -15) {
// JMPBS or JMPBC (jump if bit set/clear)
int resolvedOpcode = resolveALU(baseOpcode, operand1);
if (operand1[0] == 'R' || operand1[0] == 'r')
size = 7; // opcode (1) + register (1) + bit (1) + 32-bit jump address (4)
else
size = 10; // opcode (1) + 32-bit memory address (4) + bit (1) + 32-bit jump address (4)
} else {
// For arithmetic ALU instructions and INC/DEC,
// use operand2 to resolve.
int resolvedOpcode = resolveALU(baseOpcode, operand2);
switch (resolvedOpcode) {
case ADD_RN_RM:
case SUB_RN_RM:
case MUL_RN_RM:
case DIV_RN_RM:
case MOD_RN_RM:
case AND_RN_RM:
case OR_RN_RM:
case XOR_RN_RM:
case ADD_RN_IMM:
case SUB_RN_IMM:
case MUL_RN_IMM:
case DIV_RN_IMM:
case MOD_RN_IMM:
case AND_RN_IMM:
case OR_RN_IMM:
case XOR_RN_IMM:
size = 3; // opcode (1) + register (1) + reg/immediate (1)
break;
case INC_RN:
case DEC_RN:
size = 2; // opcode (1) + register (1)
break;
case INC_ADDR:
case DEC_ADDR:
size = 5; // opcode (1) + 32-bit address (4)
break;
default:
size = 3;
break;
}
}
} else {
// Non-ambiguous instructions that have positive opcodes.
// Use the mapping value (baseOpcode) directly.
switch (baseOpcode) {
case NOP:
case BRK:
size = 1;
break;
case SWAP:
case CMP:
size = 3;
break;
case SWAPN:
case NEG_RN:
case NOT_RN:
size = 2;
break;
case SHL_RN_IMM:
case SHR_RN_IMM:
case SAR_RN_IMM:
size = 3;
break;
case JE:
case JNE:
case JG:
case JL:
case JGE:
case JLE:
case CALL:
size = 5; // opcode (1) + 32-bit address (4)\n break;
case RET:
size = 1;
break;
default:
size = 3;
break;
}
}
addr += size;
} }
return addr; return addr;
} }
@@ -315,100 +443,86 @@ int secondPass(const char *source, uint8_t *code) {
if (line[0] == '\0' || line[0] == ';' || line[0] == '#') if (line[0] == '\0' || line[0] == ';' || line[0] == '#')
continue; continue;
// Process labels: replace colon with a space.
char *colon = strchr(line, ':'); char *colon = strchr(line, ':');
if (colon != NULL) { if (colon != NULL) {
*colon = ' '; *colon = ' ';
} }
if (strlen(line) == 0) if (strlen(line) == 0)
continue; continue;
char *token = strtok(line, " ,"); // Parse the mnemonic and operands.
if (!token) char mnemonic[32], operand1[64], operand2[64];
continue; operand1[0] = '\0';
operand2[0] = '\0';
sscanf(line, "%31s %63[^,], %63s", mnemonic, operand1, operand2);
char mnemonic[32]; // Use the mapper to get the base opcode.
strncpy(mnemonic, token, sizeof(mnemonic)); int baseOpcode = getOpcode(mnemonic);
int opcode = getOpcode(mnemonic); if (baseOpcode == -1) {
code[addr++] = opcode; fprintf(stderr, "Unknown instruction: %s\n", mnemonic);
exit(1);
}
// Handle instructions that need operand disambiguation. // --- MOV Instruction ---
if (strcmp(mnemonic, "MOV") == 0) { if (baseOpcode == -2) { // MOV is ambiguous.
// Get first operand.
char *dest = strtok(NULL, " ,"); char *dest = strtok(NULL, " ,");
char *src = strtok(NULL, " ,"); char *src = strtok(NULL, " ,");
if (!dest || !src) { if (!dest || !src) {
fprintf(stderr, "Error: MOV requires two operands.\n"); fprintf(stderr, "Error: MOV requires two operands.\n");
exit(1); exit(1);
} }
int opcode2 = resolveMOV(dest, src); int resolvedOpcode = resolveMOV(dest, src);
code[addr++] = opcode2; code[addr++] = resolvedOpcode;
// For the MOV instructions we decide that: if (resolvedOpcode == MOV_RN_IMM) {
// - For MOV_RN_IMM: operand bytes: [register, immediate]
// - For MOV_RN_RM: operand bytes: [dest register, src register]
// - For MOV_RN_ADDR: operand bytes: [dest register, address]
// - For MOV_ADDR_RN: operand bytes: [address, register]
if (opcode2 == MOV_RN_IMM) {
int reg = parseRegister(dest); int reg = parseRegister(dest);
uint8_t imm = parseImmediate(src); uint8_t imm = parseImmediate(src);
code[addr++] = reg; code[addr++] = reg;
code[addr++] = imm; code[addr++] = imm;
} else if (opcode2 == MOV_RN_RM) { } else if (resolvedOpcode == MOV_RN_RM) {
int regDest = parseRegister(dest); int regDest = parseRegister(dest);
int regSrc = parseRegister(src); int regSrc = parseRegister(src);
code[addr++] = regDest; code[addr++] = regDest;
code[addr++] = regSrc; code[addr++] = regSrc;
} else if (opcode2 == MOV_RN_ADDR) { } else if (resolvedOpcode == MOV_RN_ADDR) {
// src is memory reference like "[123]" int reg = parseRegister(dest);
int regDest = parseRegister(dest); // Remove brackets from src, assuming format "[address]"
// Remove the brackets.
char addrStr[32]; char addrStr[32];
strncpy(addrStr, src + 1, strlen(src) - 2); strncpy(addrStr, src + 1, strlen(src) - 2);
addrStr[strlen(src) - 2] = '\0'; addrStr[strlen(src) - 2] = '\0';
uint8_t memAddr = parseImmediate(addrStr); uint32_t memAddr = (uint32_t) strtoul(addrStr, NULL, 0);
code[addr++] = regDest; code[addr++] = reg;
code[addr++] = memAddr; code[addr++] = (memAddr >> 24) & 0xFF;
} else if (opcode2 == MOV_ADDR_RN) { code[addr++] = (memAddr >> 16) & 0xFF;
// dest is a memory reference, src is a register. code[addr++] = (memAddr >> 8) & 0xFF;
// Remove brackets from dest. code[addr++] = memAddr & 0xFF;
} else if (resolvedOpcode == MOV_ADDR_RN) {
// dest is memory reference.
char addrStr[32]; char addrStr[32];
strncpy(addrStr, dest + 1, strlen(dest) - 2); strncpy(addrStr, dest + 1, strlen(dest) - 2);
addrStr[strlen(dest) - 2] = '\0'; addrStr[strlen(dest) - 2] = '\0';
uint8_t memAddr = parseImmediate(addrStr); uint32_t memAddr = (uint32_t) strtoul(addrStr, NULL, 0);
int regSrc = parseRegister(src); int reg = parseRegister(src);
code[addr++] = memAddr; code[addr++] = (memAddr >> 24) & 0xFF;
code[addr++] = regSrc; code[addr++] = (memAddr >> 16) & 0xFF;
code[addr++] = (memAddr >> 8) & 0xFF;
code[addr++] = memAddr & 0xFF;
code[addr++] = reg;
} }
} else if (strcmp(mnemonic, "ADD") == 0 || }
strcmp(mnemonic, "SUB") == 0 || // --- ALU Instructions (Arithmetic, INC/DEC, etc.) ---
strcmp(mnemonic, "MUL") == 0 || else if (baseOpcode < 0 && baseOpcode != -2 && baseOpcode != -11 && baseOpcode != -14 && baseOpcode != -15) {
strcmp(mnemonic, "DIV") == 0 || // For arithmetic and INC/DEC instructions, use operand2.
strcmp(mnemonic, "MOD") == 0 ||
strcmp(mnemonic, "AND") == 0 ||
strcmp(mnemonic, "OR") == 0 ||
strcmp(mnemonic, "XOR") == 0) {
// ALU instructions with two operands.
char *dest = strtok(NULL, " ,"); char *dest = strtok(NULL, " ,");
char *src = strtok(NULL, " ,"); char *src = strtok(NULL, " ,");
if (!dest || !src) { if (!dest || !src) {
fprintf(stderr, "Error: %s requires two operands.\n", mnemonic); fprintf(stderr, "Error: %s requires two operands.\n", mnemonic);
exit(1); exit(1);
} }
int baseOpcode; int resolvedOpcode = resolveALU(baseOpcode, src);
if (strcmp(mnemonic, "ADD") == 0) baseOpcode = -3; code[addr++] = resolvedOpcode;
else if (strcmp(mnemonic, "SUB") == 0) baseOpcode = -4;
else if (strcmp(mnemonic, "MUL") == 0) baseOpcode = -5;
else if (strcmp(mnemonic, "DIV") == 0) baseOpcode = -6;
else if (strcmp(mnemonic, "MOD") == 0) baseOpcode = -7;
else if (strcmp(mnemonic, "AND") == 0) baseOpcode = -8;
else if (strcmp(mnemonic, "OR") == 0) baseOpcode = -9;
else if (strcmp(mnemonic, "XOR") == 0) baseOpcode = -10;
else baseOpcode = -1;
int opcode3 = resolveALU(baseOpcode, src);
code[addr++] = opcode3;
int regDest = parseRegister(dest); int regDest = parseRegister(dest);
code[addr++] = regDest; code[addr++] = regDest;
// For a register source, encode the register; for an immediate, encode the value.
if (src[0] == 'R' || src[0] == 'r') { if (src[0] == 'R' || src[0] == 'r') {
int regSrc = parseRegister(src); int regSrc = parseRegister(src);
code[addr++] = regSrc; code[addr++] = regSrc;
@@ -416,96 +530,158 @@ int secondPass(const char *source, uint8_t *code) {
uint8_t imm = parseImmediate(src); uint8_t imm = parseImmediate(src);
code[addr++] = imm; code[addr++] = imm;
} }
} else if (strcmp(mnemonic, "NEG") == 0 || }
strcmp(mnemonic, "SWAPN") == 0 || // --- Jump Instructions ---
strcmp(mnemonic, "NOT") == 0) { else if (baseOpcode == -11) { // JMP (ambiguous)
// One operand instructions. // For JMP, the operand is the jump target.
char *op = strtok(NULL, " ,"); char *operand = strtok(NULL, " ,");
if (!op) { if (!operand) {
fprintf(stderr, "Error: %s requires one operand.\n", mnemonic); fprintf(stderr, "Error: JMP requires an operand.\n");
exit(1); exit(1);
} }
int opcode4 = getOpcode(mnemonic); int resolvedOpcode = resolveALU(baseOpcode, operand);
code[addr++] = opcode4; code[addr++] = resolvedOpcode;
int reg = parseRegister(op); if (operand[0] == '+' || operand[0] == '-') {
// Relative jump: 1-byte offset.
uint8_t offset = parseImmediate(operand);
code[addr++] = offset;
} else {
// Absolute jump: 32-bit address.
uint32_t jumpAddr = (uint32_t) lookupLabel(operand);
code[addr++] = (jumpAddr >> 24) & 0xFF;
code[addr++] = (jumpAddr >> 16) & 0xFF;
code[addr++] = (jumpAddr >> 8) & 0xFF;
code[addr++] = jumpAddr & 0xFF;
}
}
// --- Jump Bit Set/Clear Instructions ---
else if (baseOpcode == -14 || baseOpcode == -15) {
// For JMPBS (jump if bit set) or JMPBC (jump if bit clear), the operand specifies the register/memory
// from which to test the bit, followed by the bit value and the jump target.
char *srcOperand = strtok(NULL, " ,"); // register or memory reference
char *bitToken = strtok(NULL, " ,");
char *target = strtok(NULL, " ,");
if (!srcOperand || !bitToken || !target) {
fprintf(stderr, "Error: %s requires three operands.\n", mnemonic);
exit(1);
}
int resolvedOpcode = resolveALU(baseOpcode, srcOperand);
code[addr++] = resolvedOpcode;
// Encode the source operand.
if (srcOperand[0] == 'R' || srcOperand[0] == 'r') {
int reg = parseRegister(srcOperand);
code[addr++] = reg; code[addr++] = reg;
} else if (strcmp(mnemonic, "SWAP") == 0 || strcmp(mnemonic, "CMP") == 0) { } else {
// Two operand instructions: both registers. // Memory reference: encode 32-bit address.
char addrStr[32];
strncpy(addrStr, srcOperand + 1, strlen(srcOperand) - 2);
addrStr[strlen(srcOperand) - 2] = '\\0';
uint32_t memAddr = (uint32_t) strtoul(addrStr, NULL, 0);
code[addr++] = (memAddr >> 24) & 0xFF;
code[addr++] = (memAddr >> 16) & 0xFF;
code[addr++] = (memAddr >> 8) & 0xFF;
code[addr++] = memAddr & 0xFF;
}
// Encode the bit number (assumed to be a one-byte immediate).
uint8_t bitVal = parseImmediate(bitToken);
code[addr++] = bitVal;
// Encode the jump target as a 32-bit address.
uint32_t jumpAddr = (uint32_t) lookupLabel(target);
code[addr++] = (jumpAddr >> 24) & 0xFF;
code[addr++] = (jumpAddr >> 16) & 0xFF;
code[addr++] = (jumpAddr >> 8) & 0xFF;
code[addr++] = jumpAddr & 0xFF;
}
// --- Other Instructions (CMP, SWAP, NEG, NOT, SHL, SHR, SAR, JE, JNE, JG, JL, JGE, JLE, CALL, RET) ---
else if (baseOpcode > 0) {
// For instructions that are not ambiguous, simply encode the opcode and its operands.
switch (baseOpcode) {
case CMP:
case SWAP: { // Two register operands.
char *op1 = strtok(NULL, " ,"); char *op1 = strtok(NULL, " ,");
char *op2 = strtok(NULL, " ,"); char *op2 = strtok(NULL, " ,");
if (!op1 || !op2) { if (!op1 || !op2) {
fprintf(stderr, "Error: %s requires two operands.\n", mnemonic); fprintf(stderr, "Error: %s requires two operands.\n", mnemonic);
exit(1); exit(1);
} }
int opcode5 = getOpcode(mnemonic); code[addr++] = baseOpcode;
code[addr++] = opcode5;
int r1 = parseRegister(op1); int r1 = parseRegister(op1);
int r2 = parseRegister(op2); int r2 = parseRegister(op2);
code[addr++] = r1; code[addr++] = r1;
code[addr++] = r2; code[addr++] = r2;
} else if (strcmp(mnemonic, "SHL") == 0 || }
strcmp(mnemonic, "SHR") == 0 || break;
strcmp(mnemonic, "SAR") == 0 || case SWAPN:
strcmp(mnemonic, "SHRS") == 0) { case NEG_RN:
// Shift instructions: one register operand and one immediate. case NOT_RN: { // Single register operand.
char *op = strtok(NULL, " ,");
if (!op) {
fprintf(stderr, "Error: %s requires one operand.\n", mnemonic);
exit(1);
}
code[addr++] = baseOpcode;
int reg = parseRegister(op);
code[addr++] = reg;
}
break;
case SHL_RN_IMM:
case SHR_RN_IMM:
case SAR_RN_IMM: { // Shift: register and immediate operand.
char *regToken = strtok(NULL, " ,"); char *regToken = strtok(NULL, " ,");
char *immToken = strtok(NULL, " ,"); char *immToken = strtok(NULL, " ,");
if (!regToken || !immToken) { if (!regToken || !immToken) {
fprintf(stderr, "Error: %s requires two operands.\n", mnemonic); fprintf(stderr, "Error: %s requires two operands.\n", mnemonic);
exit(1); exit(1);
} }
int opcode6 = getOpcode(mnemonic); code[addr++] = baseOpcode;
code[addr++] = opcode6;
int reg = parseRegister(regToken); int reg = parseRegister(regToken);
code[addr++] = reg; code[addr++] = reg;
uint8_t imm = parseImmediate(immToken); uint8_t imm = parseImmediate(immToken);
code[addr++] = imm; code[addr++] = imm;
} else if (strcmp(mnemonic, "JMP") == 0 || }
strcmp(mnemonic, "JE") == 0 || break;
strcmp(mnemonic, "JNE") == 0 || case JE:
strcmp(mnemonic, "JG") == 0 || case JNE:
strcmp(mnemonic, "JL") == 0 || case JG:
strcmp(mnemonic, "JGE") == 0 || case JL:
strcmp(mnemonic, "JLE") == 0 || case JGE:
strcmp(mnemonic, "CALL") == 0) { case JLE:
// Jump instructions: one operand which may be a label or an immediate address. case CALL: {
// One operand: jump target (label or immediate 32-bit address).
char *operand = strtok(NULL, " ,"); char *operand = strtok(NULL, " ,");
if (!operand) { if (!operand) {
fprintf(stderr, "Error: %s requires an operand.\n", mnemonic); fprintf(stderr, "Error: %s requires an operand.\n", mnemonic);
exit(1); exit(1);
} }
int opcode7 = getOpcode(mnemonic); code[addr++] = baseOpcode;
code[addr++] = opcode7;
// If the operand is not a number, assume it is a label.
if (!isdigit(operand[0])) { if (!isdigit(operand[0])) {
int labelAddr = lookupLabel(operand); int labelAddr = lookupLabel(operand);
if (labelAddr < 0) { if (labelAddr < 0) {
fprintf(stderr, "Error: undefined label '%s'\n", operand); fprintf(stderr, "Error: undefined label '%s'\n", operand);
exit(1); exit(1);
} }
code[addr++] = (uint8_t) labelAddr; code[addr++] = (labelAddr >> 24) & 0xFF;
code[addr++] = (labelAddr >> 16) & 0xFF;
code[addr++] = (labelAddr >> 8) & 0xFF;
code[addr++] = labelAddr & 0xFF;
} else { } else {
uint8_t imm = parseImmediate(operand); uint32_t immAddr = (uint32_t) strtoul(operand, NULL, 0);
code[addr++] = imm; code[addr++] = (immAddr >> 24) & 0xFF;
code[addr++] = (immAddr >> 16) & 0xFF;
code[addr++] = (immAddr >> 8) & 0xFF;
code[addr++] = immAddr & 0xFF;
} }
} else if (strcmp(mnemonic, "RET") == 0 || }
strcmp(mnemonic, "PUSHF") == 0 || break;
strcmp(mnemonic, "POPF") == 0) { case RET:
// Instructions with no operand. case BRK:
int opcode8 = getOpcode(mnemonic); case NOP:
code[addr++] = opcode8; code[addr++] = baseOpcode;
} else if (strcmp(mnemonic, "PUSH") == 0 || break;
strcmp(mnemonic, "POP") == 0) { default:
// One operand (a register) fprintf(stderr, "Error: Unhandled opcode %d\n", baseOpcode);
char *regToken = strtok(NULL, " ,");
if (!regToken) {
fprintf(stderr, "Error: %s requires a register operand.\n", mnemonic);
exit(1); exit(1);
} }
int opcode9 = getOpcode(mnemonic);
code[addr++] = opcode9;
int reg = parseRegister(regToken);
code[addr++] = reg;
} else { } else {
fprintf(stderr, "Error: Unknown instruction '%s'\n", mnemonic); fprintf(stderr, "Error: Unknown instruction '%s'\n", mnemonic);
exit(1); exit(1);
@@ -514,12 +690,11 @@ int secondPass(const char *source, uint8_t *code) {
return addr; return addr;
} }
void completePass(const char *input, CPU *cpu) { void completePass(const char *input, CPU *cpu, bool erase) {
// First pass: determine label addresses. // First pass: determine label addresses.
firstPass(input); firstPass(input);
if (erase) {
memset(cpu->memory, 0, MEM_SIZE); memset(cpu->memory, 0, MEM_SIZE);
}
// Second pass: generate machine code.
secondPass(input, cpu->memory); secondPass(input, cpu->memory);
} }

View File

@@ -81,7 +81,7 @@ int firstPass(const char *source);
// //
int secondPass(const char *source, uint8_t *code); int secondPass(const char *source, uint8_t *code);
void completePass(const char *input, CPU *cpu); void completePass(const char *input, CPU *cpu, bool erase);
#endif //RISCB_ASSEMBLER_H #endif //RISCB_ASSEMBLER_H

View File

@@ -9,7 +9,6 @@
// Initialize CPU // Initialize CPU
void init_cpu(CPU *cpu) { void init_cpu(CPU *cpu) {
memset(cpu, 0, sizeof(CPU)); memset(cpu, 0, sizeof(CPU));
cpu->sp = MEM_SIZE - 1; // Stack grows downward
} }
// Helper function for setting flags in the CPU (here we assume bit0 is the Zero flag, // Helper function for setting flags in the CPU (here we assume bit0 is the Zero flag,
@@ -17,21 +16,25 @@ void init_cpu(CPU *cpu) {
static inline void set_flags(CPU *cpu, int32_t result) { static inline void set_flags(CPU *cpu, int32_t result) {
cpu->flags = 0; cpu->flags = 0;
if (result == 0) if (result == 0)
cpu->flags |= 0x01; // Zero flag cpu->flags |= CPU_FLAG_ZERO; // Zero flag
if (result < 0) if (result < 0)
cpu->flags |= 0x02; // Negative flag cpu->flags |= CPU_FLAG_NEGATIVE; // Negative flag
} }
// Execute a program (a byte array) on the given CPU. // Execute one cycle
void step(CPU *cpu) { void step(CPU *cpu) {
if (cpu->mode < EverySecond) { if (!(cpu->mode & (CPU_MODE_HALTED | CPU_MODE_PAUSED | CPU_MODE_ERROR))) {
return; return;
} }
if (cpu->pc >= MEM_SIZE) { if (cpu->pc >= MEM_SIZE) {
cpu->mode = Done; //terminate if (cpu->mode | CPU_MODE_LOOP) {
cpu->pc = 0;
} else {
cpu->mode |= CPU_MODE_HALTED;
}
} }
uint8_t opcode = read_mem(cpu, cpu->pc++); uint8_t opcode = read_mem(cpu, cpu->pc++);
uint8_t reg1, reg2, imm, temp; uint8_t reg1, reg2, imm, temp, temp2;
uint32_t newPC, addrTemp; uint32_t newPC, addrTemp;
int32_t cmpResult; int32_t cmpResult;
@@ -42,7 +45,7 @@ void step(CPU *cpu) {
case BRK: case BRK:
//Pause CPU (for breakpoints) //Pause CPU (for breakpoints)
cpu->mode = Paused; cpu->mode |= CPU_MODE_PAUSED;
break; break;
case INC_RN: case INC_RN:
@@ -50,11 +53,10 @@ void step(CPU *cpu) {
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
temp = read_reg(cpu, reg1); temp = read_reg(cpu, reg1);
write_reg(cpu, reg1, temp + 1); write_reg(cpu, reg1, temp + 1);
cpu->regs[reg1]++;
case INC_ADDR: case INC_ADDR:
//Increment address //Increment address
addrTemp = read_address(cpu); addrTemp = read_address_argument(cpu);
temp = read_mem(cpu, addrTemp); temp = read_mem(cpu, addrTemp);
write_mem(cpu, addrTemp, temp + 1); write_mem(cpu, addrTemp, temp + 1);
@@ -63,11 +65,10 @@ void step(CPU *cpu) {
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
temp = read_reg(cpu, reg1); temp = read_reg(cpu, reg1);
write_reg(cpu, reg1, temp - 1); write_reg(cpu, reg1, temp - 1);
cpu->regs[reg1]++;
case DEC_ADDR: case DEC_ADDR:
//Decrement address //Decrement address
addrTemp = read_address(cpu); addrTemp = read_address_argument(cpu);
temp = read_mem(cpu, addrTemp); temp = read_mem(cpu, addrTemp);
write_mem(cpu, addrTemp, temp - 1); write_mem(cpu, addrTemp, temp - 1);
@@ -88,211 +89,254 @@ void step(CPU *cpu) {
case MOV_RN_ADDR: case MOV_RN_ADDR:
// Store register to memory // Store register to memory
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
addrTemp = read_address(cpu); addrTemp = read_address_argument(cpu);
temp = read_reg(cpu, reg1); temp = read_reg(cpu, reg1);
write_mem(cpu, addrTemp, temp); write_mem(cpu, addrTemp, temp);
break; break;
case MOV_ADDR_RN: case MOV_ADDR_RN:
// Load memory to register // Load memory to register
addrTemp = read_address(cpu); addrTemp = read_address_argument(cpu);
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
temp = read temp = read_mem(cpu, addrTemp);
write_mem(cpu, addrTemp, cpu->regs[reg1]); write_reg(cpu, reg1, temp);
break; break;
case SWAP: { case SWAP: {
// Swap contents of two registers. // Swap contents of two registers.
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu); reg2 = read_reg_number(cpu);
temp = cpu->regs[reg1]; temp = read_reg(cpu, reg1);
cpu->regs[reg1] = cpu->regs[reg2]; temp2 = read_reg(cpu, reg2);
cpu->regs[reg2] = temp; write_reg(cpu, reg1, temp2);
write_reg(cpu, reg2, temp);
break; break;
} }
case SWAPN: { case SWAPN: {
// Swap the nibbles of a register. // Swap the nibbles of a register.
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
uint8_t val = (uint8_t) cpu->regs[reg1]; temp = read_reg(cpu, reg1);
cpu->regs[reg1] = ((val & 0x0F) << 4) | ((val & 0xF0) >> 4); cpu->regs[reg1] = ((temp & 0x0F) << 4) | ((temp & 0xF0) >> 4);
write_reg(cpu, reg1, temp);
break; break;
} }
case ADD_RN_RM: case ADD_RN_RM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu); reg2 = read_reg_number(cpu);
cpu->regs[reg1] += cpu->regs[reg2]; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp += read_reg(cpu, reg2);
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case ADD_RN_IMM: case ADD_RN_IMM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] += imm; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp += imm;
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case SUB_RN_RM: case SUB_RN_RM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu); reg2 = read_reg_number(cpu);
cpu->regs[reg1] -= cpu->regs[reg2]; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp -= read_reg(cpu, reg2);
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case SUB_RN_IMM: case SUB_RN_IMM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] -= imm; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp -= imm;
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case MUL_RN_RM: case MUL_RN_RM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu); reg2 = read_reg_number(cpu);
cpu->regs[reg1] *= cpu->regs[reg2]; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp *= read_reg(cpu, reg2);
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case MUL_RN_IMM: case MUL_RN_IMM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] *= imm; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp *= imm;
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case DIV_RN_RM: case DIV_RN_RM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu); reg2 = read_reg_number(cpu);
if (cpu->regs[reg2] == 0) { temp = read_reg(cpu, reg1);
temp2 = read_reg(cpu, reg2);
if (temp2 == 0) {
printf("Error: Division by zero!\n"); printf("Error: Division by zero!\n");
cpu->mode = Error; cpu->mode |= CPU_MODE_ERROR;
return; return;
} }
cpu->regs[reg1] /= cpu->regs[reg2]; temp /= temp2;
set_flags(cpu, cpu->regs[reg1]); write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case DIV_RN_IMM: case DIV_RN_IMM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
temp = read_reg(cpu, reg1);
imm = read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++);
if (imm == 0) { if (imm == 0) {
printf("Error: Division by zero!\n"); printf("Error: Division by zero!\n");
cpu->mode = Error; cpu->mode |= CPU_MODE_ERROR;
return; return;
} }
cpu->regs[reg1] /= imm; temp /= imm;
set_flags(cpu, cpu->regs[reg1]); write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case MOD_RN_RM: case MOD_RN_RM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu); reg2 = read_reg_number(cpu);
if (cpu->regs[reg2] == 0) { temp = read_reg(cpu, reg1);
temp2 = read_reg(cpu, reg2);
if (temp2 == 0) {
printf("Error: Modulo by zero!\n"); printf("Error: Modulo by zero!\n");
cpu->mode = Error; cpu->mode |= CPU_MODE_ERROR;
return; return;
} }
cpu->regs[reg1] %= cpu->regs[reg2]; temp %= temp2;
set_flags(cpu, cpu->regs[reg1]); write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case MOD_RN_IMM: case MOD_RN_IMM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
temp = read_reg(cpu, reg1);
imm = read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++);
if (imm == 0) { if (imm == 0) {
printf("Error: Modulo by zero!\n"); printf("Error: Modulo by zero!\n");
cpu->mode = Error; cpu->mode |= CPU_MODE_ERROR;
return; return;
} }
cpu->regs[reg1] %= imm; temp %= imm;
set_flags(cpu, cpu->regs[reg1]); write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case NEG_RN: case NEG_RN:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
cpu->regs[reg1] = -((int32_t) cpu->regs[reg1]); temp = -read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case AND_RN_RM: case AND_RN_RM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu); reg2 = read_reg_number(cpu);
cpu->regs[reg1] &= cpu->regs[reg2]; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp &= read_reg(cpu, reg2);
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case AND_RN_IMM: case AND_RN_IMM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
temp = read_reg(cpu, reg1);
imm = read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] &= imm; temp &= imm;
set_flags(cpu, cpu->regs[reg1]); write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case OR_RN_RM: case OR_RN_RM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu); reg2 = read_reg_number(cpu);
cpu->regs[reg1] |= cpu->regs[reg2]; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp |= read_reg(cpu, reg2);
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case OR_RN_IMM: case OR_RN_IMM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] |= imm; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp |= imm;
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case XOR_RN_RM: case XOR_RN_RM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu); reg2 = read_reg_number(cpu);
cpu->regs[reg1] ^= cpu->regs[reg2]; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp ^= read_reg(cpu, reg2);
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case XOR_RN_IMM: case XOR_RN_IMM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] ^= imm; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp ^= imm;
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case NOT_RN: case NOT_RN:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
cpu->regs[reg1] = ~cpu->regs[reg1]; temp = ~read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case SHL_RN_IMM: case SHL_RN_IMM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] <<= imm; temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp <<= imm;
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case SHR_RN_IMM: case SHR_RN_IMM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] >>= imm; // Logical right shift (assuming unsigned value) temp = read_reg(cpu, reg1);
set_flags(cpu, cpu->regs[reg1]); temp >>= imm; // Logical right shift (assuming unsigned value)
write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case SAR_RN_IMM: case SAR_RN_IMM:
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++);
temp = read_reg(cpu, reg1);
// Arithmetic right shift; cast to signed before shifting. // Arithmetic right shift; cast to signed before shifting.
cpu->regs[reg1] = ((int32_t) cpu->regs[reg1]) >> imm; temp = ((int32_t) temp) >> imm;
set_flags(cpu, cpu->regs[reg1]); write_reg(cpu, reg1, temp);
set_flags(cpu, temp);
break; break;
case JMP: case JMP:
newPC = read_mem32(cpu, cpu->pc); newPC = read_address_argument(cpu);
cpu->pc += 4;
cpu->pc = newPC; cpu->pc = newPC;
break; break;
case JMP_REL: case JMP_REL:
imm = (int32_t) read_mem(cpu, cpu->pc++); imm = read_mem(cpu, cpu->pc++) & 0xFF;
cpu->pc += imm; cpu->pc += imm;
break; break;
@@ -300,31 +344,34 @@ void step(CPU *cpu) {
// Compare two registers: set flags (Zero, Negative) // Compare two registers: set flags (Zero, Negative)
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu); reg2 = read_reg_number(cpu);
cmpResult = (int32_t) cpu->regs[reg1] - (int32_t) cpu->regs[reg2]; temp = read_reg(cpu, reg1);
temp2 = read_reg(cpu, reg2);
cmpResult = (int32_t) temp - (int32_t) temp2;
set_flags(cpu, cmpResult); set_flags(cpu, cmpResult);
break; break;
} }
case JE_BIT_RN: { case JMP_BIT_SET_RN: {
// Jump if bit in register set // Jump if bit in register set
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
uint8_t bit = read_mem(cpu, cpu->pc++);
newPC = read_address_argument(cpu);
temp = read_reg(cpu, reg1);
if (reg1 >= REG_COUNT) { if (reg1 >= REG_COUNT) {
reg1 = REG_COUNT - 1; reg1 = REG_COUNT - 1;
} }
uint8_t bit = read_mem(cpu, cpu->pc++);
if (bit > 7) { if (bit > 7) {
bit = 7; bit = 7;
} }
newPC = read_mem32(cpu, cpu->pc); if (temp & (1 << bit))
cpu->pc += 4;
if (cpu->regs[reg1] & (1 << bit))
cpu->pc = newPC; cpu->pc = newPC;
break; break;
} }
case JE_BIT_ADDR: { case JMP_BIT_SET_ADDR: {
// Jump if bit in register set // Jump if bit in register set
addrTemp = read_mem32(cpu, cpu->pc); addrTemp = read_address_argument(cpu);
if (addrTemp >= MEM_SIZE) { if (addrTemp >= MEM_SIZE) {
addrTemp = MEM_SIZE - 1; addrTemp = MEM_SIZE - 1;
} }
@@ -332,9 +379,8 @@ void step(CPU *cpu) {
if (bit > 7) { if (bit > 7) {
bit = 7; bit = 7;
} }
newPC = read_mem32(cpu, cpu->pc); newPC = read_address_argument(cpu);
cpu->pc += 4; if (read_mem(cpu, addrTemp) & (1 << bit))
if (cpu->memory[addrTemp] & (1 << bit))
cpu->pc = newPC; cpu->pc = newPC;
break; break;
} }
@@ -342,134 +388,98 @@ void step(CPU *cpu) {
case JE: { case JE: {
// Jump if equal (Zero flag set) // Jump if equal (Zero flag set)
newPC = read_mem32(cpu, cpu->pc); newPC = read_address_argument(cpu);
cpu->pc += 4; if (cpu->flags & CPU_FLAG_ZERO)
if (cpu->flags & 0x01)
cpu->pc = newPC; cpu->pc = newPC;
break; break;
} }
case JNE_BIT_RN: { case JMP_BIT_CLEAR_RN: {
// Jump if bit in register set // Jump if bit in register set
reg1 = read_reg_number(cpu); reg1 = read_reg_number(cpu);
if (reg1 >= REG_COUNT) { temp = read_reg(cpu, reg1);
reg1 = REG_COUNT - 1;
}
uint8_t bit = read_mem(cpu, cpu->pc++); uint8_t bit = read_mem(cpu, cpu->pc++);
if (bit > 7) { if (bit > 7) {
bit = 7; bit = 7;
} }
newPC = read_mem32(cpu, cpu->pc); newPC = read_address_argument(cpu);
cpu->pc += 4; if (!(temp & (1 << bit)))
if (!(cpu->regs[reg1] & (1 << bit)))
cpu->pc = newPC; cpu->pc = newPC;
break; break;
} }
case JNE_BIT_ADDR: { case JMP_BIT_CLEAR_ADDR: {
// Jump if bit in register set // Jump if bit in register set
addrTemp = read_mem32(cpu, cpu->pc); addrTemp = read_address_argument(cpu);
if (addrTemp >= MEM_SIZE) {
addrTemp = MEM_SIZE - 1;
}
uint8_t bit = read_mem(cpu, cpu->pc++); uint8_t bit = read_mem(cpu, cpu->pc++);
if (bit > 7) { if (bit > 7) {
bit = 7; bit = 7;
} }
newPC = read_mem32(cpu, cpu->pc); newPC = read_address_argument(cpu);
cpu->pc += 4; if (!(read_mem(cpu, addrTemp) & (1 << bit)))
if (!(cpu->memory[addrTemp] & (1 << bit)))
cpu->pc = newPC; cpu->pc = newPC;
break; break;
} }
case JNE: { case JNE: {
// Jump if not equal (Zero flag clear) // Jump if not equal (Zero flag clear)
newPC = read_mem32(cpu, cpu->pc); newPC = read_address_argument(cpu);
cpu->pc += 4; if (!(cpu->flags & CPU_FLAG_ZERO)) {
if (!(cpu->flags & 0x01))
cpu->pc = newPC; cpu->pc = newPC;
}
break; break;
} }
case JG: { case JG: {
// Jump if greater: not negative and not zero. // Jump if greater: not negative and not zero.
newPC = read_mem32(cpu, cpu->pc); newPC = read_address_argument(cpu);
cpu->pc += 4; if (!(cpu->flags & CPU_FLAG_NEGATIVE) && !(cpu->flags & CPU_FLAG_ZERO)) {
if (((cpu->flags & 0x02) == 0) && ((cpu->flags & 0x01) == 0))
cpu->pc = newPC; cpu->pc = newPC;
}
break; break;
} }
case JL: { case JL: {
// Jump if less: Negative flag set. // Jump if less: Negative flag set.
newPC = read_mem32(cpu, cpu->pc); newPC = read_address_argument(cpu);
cpu->pc += 4; if (cpu->flags & CPU_FLAG_NEGATIVE) {
if (cpu->flags & 0x02)
cpu->pc = newPC; cpu->pc = newPC;
}
break; break;
} }
case JGE: { case JGE: {
// Jump if greater or equal: Zero flag set or negative clear. // Jump if greater or equal: Zero flag set or negative clear.
newPC = read_mem32(cpu, cpu->pc); newPC = read_address_argument(cpu);
cpu->pc += 4; if ((cpu->flags & CPU_FLAG_ZERO) || !(cpu->flags & CPU_FLAG_NEGATIVE)) {
if ((cpu->flags & 0x01) || ((cpu->flags & 0x02) == 0))
cpu->pc = newPC; cpu->pc = newPC;
}
break; break;
} }
case JLE: { case JLE: {
// Jump if less or equal: Negative flag set or Zero flag set. // Jump if less or equal: Negative flag set or Zero flag set.
newPC = read_mem32(cpu, cpu->pc); newPC = read_address_argument(cpu);
cpu->pc += 4; if ((cpu->flags & CPU_FLAG_NEGATIVE) || (cpu->flags & CPU_FLAG_ZERO)) {
if ((cpu->flags & 0x02) || (cpu->flags & 0x01))
cpu->pc = newPC; cpu->pc = newPC;
}
break; break;
} }
case CALL: { case CALL: {
// Push the current PC onto the stack, then jump to the address. newPC = read_address_argument(cpu);
newPC = read_mem32(cpu, cpu->pc); write_stack(cpu);
cpu->pc += 4;
// Push return address (current PC) onto the stack.
write_mem32(cpu, cpu->sp, cpu->pc);
cpu->sp -= 4;
cpu->pc = newPC; cpu->pc = newPC;
break; break;
} }
case RET: case RET:
// For RET, assume that the return address was stored on the stack. // For RET, assume that the return address was stored on the stack.
cpu->pc = read_mem(cpu, ++cpu->sp); read_stack(cpu);
break;
case PUSH: {
// Push register value onto the stack.
reg1 = read_reg_number(cpu);
write_mem(cpu, cpu->sp--, (uint8_t) cpu->regs[reg1]);
break;
}
case POP: {
// Pop a value from the stack into a register.
reg1 = read_reg_number(cpu);
cpu->regs[reg1] = read_mem(cpu, ++cpu->sp);
break;
}
case PUSHF:
// Push the flags register.
write_mem(cpu, cpu->sp--, cpu->flags);
break;
case POPF:
// Pop into the flags register.
cpu->flags = read_mem(cpu, ++cpu->sp);
break; break;
default: default:
printf("Unknown opcode: %d\n", opcode); printf("Unknown opcode: %d\n", opcode);
cpu->mode = Error; cpu->mode |= CPU_MODE_ERROR;
} }
} }

View File

@@ -8,27 +8,31 @@
#include <stdint.h> #include <stdint.h>
#include "stdio.h" #include "stdio.h"
enum Mode {
Paused,
Done,
Error,
EverySecond,
EveryFrame,
MaxSpeed
};
#define MEM_SIZE 65535 #define MEM_SIZE 65535
// Register count (register names R0 to R7) // Register count (register names R0 to R7)
#define REG_COUNT 32 #define REG_COUNT 32
#define STACK_SIZE 255
#define CPU_FLAG_ZERO (1 << 0)
#define CPU_FLAG_NEGATIVE (1 << 1)
#define CPU_MODE_PAUSED (1 << 0)
#define CPU_MODE_HALTED (1 << 1)
#define CPU_MODE_ERROR (1 << 2)
#define CPU_MODE_LOOP (1 << 3)
#define CPU_MODE_STEP (1 << 4)
#define CPU_MODE_SECOND (1 << 5)
// CPU state // CPU state
typedef struct { typedef struct {
uint8_t regs[REG_COUNT]; uint8_t regs[REG_COUNT];
uint8_t memory[MEM_SIZE]; uint8_t memory[MEM_SIZE];
uint32_t pc; // Program counter uint32_t pc; // Program counter
uint32_t sp; // Stack pointer uint32_t stack[STACK_SIZE]; // Stack pointer
uint32_t stack_ptr; // Stack pointer
uint8_t flags; // Status flags uint8_t flags; // Status flags
enum Mode mode; uint8_t mode;
} CPU; } CPU;
void step(CPU *cpu); void step(CPU *cpu);
@@ -45,12 +49,6 @@ typedef enum {
BRK, // BRK - Pause CPU (halts execution until resumed) BRK, // BRK - Pause CPU (halts execution until resumed)
INC_RN, //INC Rn - Increment register
INC_ADDR, //INC [Addr] - Increment address
DEC_RN, //DEC Rn - Increment register
DEC_ADDR, //DEC [Addr] - Increment address
MOV_RN_IMM, // MOV Rn, Imm - Move immediate to register (Rn = Imm) MOV_RN_IMM, // MOV Rn, Imm - Move immediate to register (Rn = Imm)
MOV_RN_RM, // MOV Rn, Rm - Move value from one register to another (Rn = Rm) MOV_RN_RM, // MOV Rn, Rm - Move value from one register to another (Rn = Rm)
MOV_RN_ADDR, // MOV Rn, [Addr] - Load value from memory address into register (Rn = [Addr]) MOV_RN_ADDR, // MOV Rn, [Addr] - Load value from memory address into register (Rn = [Addr])
@@ -98,15 +96,22 @@ typedef enum {
JMP_REL, // JMP Offset - relative jump (offset is signed) JMP_REL, // JMP Offset - relative jump (offset is signed)
INC_RN, //INC Rn - Increment register
INC_ADDR, //INC [Addr] - Increment address
DEC_RN, //DEC Rn - Increment register
DEC_ADDR, //DEC [Addr] - Increment address
CMP, // CMP Rn, Rm - Compare two registers (sets flags based on Rn - Rm) CMP, // CMP Rn, Rm - Compare two registers (sets flags based on Rn - Rm)
JE, // JE Addr - Jump if equal (if zero flag set, PC = Addr) JE, // JE Addr - Jump if equal (if zero flag set, PC = Addr)
JE_BIT_RN, // jump relative if a given bit in a register is set
JE_BIT_ADDR, // jump relative if a given bit in memory is set
JNE, // JNE Addr - Jump if not equal (if zero flag not set, PC = Addr) JNE, // JNE Addr - Jump if not equal (if zero flag not set, PC = Addr)
JNE_BIT_RN, // jump relative if a given bit in a register is not set
JNE_BIT_ADDR, // jump relative if a given bit in memory is not set JMP_BIT_SET_RN, // jump relative if a given bit in a register is set
JMP_BIT_SET_ADDR, // jump relative if a given bit in memory is set
JMP_BIT_CLEAR_RN, // jump relative if a given bit in a register is not set
JMP_BIT_CLEAR_ADDR, // jump relative if a given bit in memory is not set
JG, // JG Addr - Jump if greater (if greater flag set, PC = Addr) JG, // JG Addr - Jump if greater (if greater flag set, PC = Addr)
@@ -116,17 +121,9 @@ typedef enum {
JLE, // JLE Addr - Jump if less or equal (if less or zero flag set, PC = Addr) JLE, // JLE Addr - Jump if less or equal (if less or zero flag set, PC = Addr)
CALL, // CALL Addr - Call subroutine (push PC to stack, PC = Addr) CALL, // CALL Addr - Call subroutine (push PC, flags and registers to stack, PC = Addr)
RET, // RET - Return from subroutine (pop PC from stack) RET, // RET - Return from subroutine (pop PC, flags and registers from stack)
PUSH, // PUSH Rn - Push register onto stack (stack[top] = Rn)
POP, // POP Rn - Pop value from stack into register (Rn = stack[top])
PUSHF, // PUSHF - Push flags onto stack (stack[top] = flags)
POPF // POPF - Pop flags from stack (flags = stack[top])
} Opcode; } Opcode;
#endif //RISCB_CORE_H #endif //RISCB_CORE_H

View File

@@ -37,8 +37,8 @@ uint32_t read_mem32(CPU *cpu, uint32_t addr) {
return read_mem16(cpu, addr) | (read_mem16(cpu, addr + 2) << 16); return read_mem16(cpu, addr) | (read_mem16(cpu, addr + 2) << 16);
} }
uint32_t read_address(CPU *cpu) { uint32_t read_address_argument(CPU *cpu) {
uint32_t out = read_mem16(cpu, cpu->pc) | (read_mem16(cpu, cpu->pc + 2) << 16); uint32_t out = read_mem32(cpu, cpu->pc);
cpu->pc += 4; cpu->pc += 4;
if (out >= MEM_SIZE) { if (out >= MEM_SIZE) {
out = MEM_SIZE - 1; out = MEM_SIZE - 1;
@@ -46,6 +46,54 @@ uint32_t read_address(CPU *cpu) {
return out; return out;
} }
// Push a 32-bit program counter (PC) onto the stack
void write_stack(CPU *cpu) {
if (cpu->pc >= MEM_SIZE) {
return; // Invalid memory address
}
if (cpu->stack_ptr >= STACK_SIZE - 1) {
return; // Stack overflow protection
}
cpu->stack[++cpu->stack_ptr] = cpu->pc;
for (uint32_t reg = 0; reg < REG_COUNT; reg += 4) {
uint32_t packed = cpu->regs[reg] |
((reg + 1 < REG_COUNT) ? (cpu->regs[reg + 1] << 8) : 0) |
((reg + 2 < REG_COUNT) ? (cpu->regs[reg + 2] << 16) : 0) |
((reg + 3 < REG_COUNT) ? (cpu->regs[reg + 3] << 24) : 0);
cpu->stack[++cpu->stack_ptr] = packed;
}
cpu->stack[++cpu->stack_ptr] = cpu->flags;
}
// Pop a 32-bit program counter (PC) and registers from the stack
void read_stack(CPU *cpu) {
if (cpu->stack_ptr == 0) {
return; // Stack underflow protection
}
// Restore flags
cpu->flags = cpu->stack[cpu->stack_ptr--];
// Restore registers
for (int32_t reg = REG_COUNT - 1; reg >= 0; reg -= 4) {
if (cpu->stack_ptr == 0) {
return; // Stack underflow protection
}
uint32_t packed = cpu->stack[cpu->stack_ptr--];
cpu->regs[reg] = (packed & 0xFF);
if (reg - 1 >= 0) cpu->regs[reg - 1] = ((packed >> 8) & 0xFF);
if (reg - 2 >= 0) cpu->regs[reg - 2] = ((packed >> 16) & 0xFF);
if (reg - 3 >= 0) cpu->regs[reg - 3] = ((packed >> 24) & 0xFF);
}
// Restore PC
if (cpu->stack_ptr == 0) {
return; // Stack underflow protection
}
cpu->pc = cpu->stack[cpu->stack_ptr--];
}
uint8_t read_reg_number(CPU *cpu) { uint8_t read_reg_number(CPU *cpu) {
uint8_t out = read_mem(cpu, cpu->pc++); uint8_t out = read_mem(cpu, cpu->pc++);
if (out >= REG_COUNT) { if (out >= REG_COUNT) {

View File

@@ -8,25 +8,29 @@
#include <stdint.h> #include <stdint.h>
#include "../cpu/core.h" #include "../cpu/core.h"
uint8_t write_mem32(CPU *cpu, uint32_t addr, uint32_t value); inline uint8_t write_mem32(CPU *cpu, uint32_t addr, uint32_t value);
uint8_t write_mem16(CPU *cpu, uint32_t addr, uint16_t value); inline uint8_t write_mem16(CPU *cpu, uint32_t addr, uint16_t value);
uint32_t read_mem32(CPU *cpu, uint32_t addr); inline uint32_t read_mem32(CPU *cpu, uint32_t addr);
uint32_t read_address(CPU *cpu); inline uint32_t read_address_argument(CPU *cpu);
uint8_t read_reg_number(CPU *cpu); void read_stack(CPU *cpu);
uint8_t read_reg(CPU *cpu, uint8_t number); void write_stack(CPU *cpu);
uint8_t write_reg(CPU *cpu, uint8_t number, uint8_t value); inline uint8_t read_reg_number(CPU *cpu);
uint16_t read_mem16(CPU *cpu, uint32_t addr); inline uint8_t read_reg(CPU *cpu, uint8_t number);
uint8_t read_mem(CPU *cpu, uint32_t addr); inline uint8_t write_reg(CPU *cpu, uint8_t number, uint8_t value);
uint8_t write_mem(CPU *cpu, uint32_t addr, uint8_t value); inline uint16_t read_mem16(CPU *cpu, uint32_t addr);
inline uint8_t read_mem(CPU *cpu, uint32_t addr);
inline uint8_t write_mem(CPU *cpu, uint32_t addr, uint8_t value);
#endif //RISCB_MEMORY_H #endif //RISCB_MEMORY_H

2
main.c
View File

@@ -126,7 +126,7 @@ int main(__attribute__((unused)) int argc, __attribute__((unused)) char *args[])
uint8_t *program; uint8_t *program;
int program_size; int program_size;
completePass(programString, &cpu); completePass(programString, &cpu, true);
step(&cpu); step(&cpu);