Files
RISC-B/cpu/core.c
2025-02-05 14:08:20 +01:00

475 lines
14 KiB
C

//
// Created by bruno on 2.2.2025.
//
#include "core.h"
#include "memory.h"
#include "string.h"
// Initialize CPU
void init_cpu(CPU *cpu) {
memset(cpu, 0, sizeof(CPU));
cpu->sp = MEM_SIZE - 1; // Stack grows downward
}
// Helper function for setting flags in the CPU (here we assume bit0 is the Zero flag,
// and bit1 is the Negative flag).
static inline void set_flags(CPU *cpu, int32_t result) {
cpu->flags = 0;
if (result == 0)
cpu->flags |= 0x01; // Zero flag
if (result < 0)
cpu->flags |= 0x02; // Negative flag
}
// Execute a program (a byte array) on the given CPU.
void step(CPU *cpu) {
if (cpu->mode < EverySecond) {
return;
}
if (cpu->pc >= MEM_SIZE) {
cpu->mode = Done; //terminate
}
uint8_t opcode = read_mem(cpu, cpu->pc++);
uint8_t reg1, reg2, imm, temp;
uint32_t newPC, addrTemp;
int32_t cmpResult;
switch (opcode) {
case NOP:
//Don't do anything
break;
case BRK:
//Pause CPU (for breakpoints)
cpu->mode = Paused;
break;
case INC_RN:
//Increment register
reg1 = read_reg_number(cpu);
temp = read_reg(cpu, reg1);
write_reg(cpu, reg1, temp + 1);
cpu->regs[reg1]++;
case INC_ADDR:
//Increment address
addrTemp = read_address(cpu);
temp = read_mem(cpu, addrTemp);
write_mem(cpu, addrTemp, temp + 1);
case DEC_RN:
//Decrement register
reg1 = read_reg_number(cpu);
temp = read_reg(cpu, reg1);
write_reg(cpu, reg1, temp - 1);
cpu->regs[reg1]++;
case DEC_ADDR:
//Decrement address
addrTemp = read_address(cpu);
temp = read_mem(cpu, addrTemp);
write_mem(cpu, addrTemp, temp - 1);
case MOV_RN_IMM:
//Load from immediate to register
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] = imm;
break;
case MOV_RN_RM:
reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu);
temp = read_reg(cpu, reg1);
write_reg(cpu, reg2, temp);
break;
case MOV_RN_ADDR:
// Store register to memory
reg1 = read_reg_number(cpu);
addrTemp = read_address(cpu);
temp = read_reg(cpu, reg1);
write_mem(cpu, addrTemp, temp);
break;
case MOV_ADDR_RN:
// Load memory to register
addrTemp = read_address(cpu);
reg1 = read_reg_number(cpu);
temp = read
write_mem(cpu, addrTemp, cpu->regs[reg1]);
break;
case SWAP: {
// Swap contents of two registers.
reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu);
temp = cpu->regs[reg1];
cpu->regs[reg1] = cpu->regs[reg2];
cpu->regs[reg2] = temp;
break;
}
case SWAPN: {
// Swap the nibbles of a register.
reg1 = read_reg_number(cpu);
uint8_t val = (uint8_t) cpu->regs[reg1];
cpu->regs[reg1] = ((val & 0x0F) << 4) | ((val & 0xF0) >> 4);
break;
}
case ADD_RN_RM:
reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu);
cpu->regs[reg1] += cpu->regs[reg2];
set_flags(cpu, cpu->regs[reg1]);
break;
case ADD_RN_IMM:
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] += imm;
set_flags(cpu, cpu->regs[reg1]);
break;
case SUB_RN_RM:
reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu);
cpu->regs[reg1] -= cpu->regs[reg2];
set_flags(cpu, cpu->regs[reg1]);
break;
case SUB_RN_IMM:
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] -= imm;
set_flags(cpu, cpu->regs[reg1]);
break;
case MUL_RN_RM:
reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu);
cpu->regs[reg1] *= cpu->regs[reg2];
set_flags(cpu, cpu->regs[reg1]);
break;
case MUL_RN_IMM:
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] *= imm;
set_flags(cpu, cpu->regs[reg1]);
break;
case DIV_RN_RM:
reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu);
if (cpu->regs[reg2] == 0) {
printf("Error: Division by zero!\n");
cpu->mode = Error;
return;
}
cpu->regs[reg1] /= cpu->regs[reg2];
set_flags(cpu, cpu->regs[reg1]);
break;
case DIV_RN_IMM:
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
if (imm == 0) {
printf("Error: Division by zero!\n");
cpu->mode = Error;
return;
}
cpu->regs[reg1] /= imm;
set_flags(cpu, cpu->regs[reg1]);
break;
case MOD_RN_RM:
reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu);
if (cpu->regs[reg2] == 0) {
printf("Error: Modulo by zero!\n");
cpu->mode = Error;
return;
}
cpu->regs[reg1] %= cpu->regs[reg2];
set_flags(cpu, cpu->regs[reg1]);
break;
case MOD_RN_IMM:
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
if (imm == 0) {
printf("Error: Modulo by zero!\n");
cpu->mode = Error;
return;
}
cpu->regs[reg1] %= imm;
set_flags(cpu, cpu->regs[reg1]);
break;
case NEG_RN:
reg1 = read_reg_number(cpu);
cpu->regs[reg1] = -((int32_t) cpu->regs[reg1]);
set_flags(cpu, cpu->regs[reg1]);
break;
case AND_RN_RM:
reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu);
cpu->regs[reg1] &= cpu->regs[reg2];
set_flags(cpu, cpu->regs[reg1]);
break;
case AND_RN_IMM:
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] &= imm;
set_flags(cpu, cpu->regs[reg1]);
break;
case OR_RN_RM:
reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu);
cpu->regs[reg1] |= cpu->regs[reg2];
set_flags(cpu, cpu->regs[reg1]);
break;
case OR_RN_IMM:
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] |= imm;
set_flags(cpu, cpu->regs[reg1]);
break;
case XOR_RN_RM:
reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu);
cpu->regs[reg1] ^= cpu->regs[reg2];
set_flags(cpu, cpu->regs[reg1]);
break;
case XOR_RN_IMM:
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] ^= imm;
set_flags(cpu, cpu->regs[reg1]);
break;
case NOT_RN:
reg1 = read_reg_number(cpu);
cpu->regs[reg1] = ~cpu->regs[reg1];
set_flags(cpu, cpu->regs[reg1]);
break;
case SHL_RN_IMM:
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] <<= imm;
set_flags(cpu, cpu->regs[reg1]);
break;
case SHR_RN_IMM:
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
cpu->regs[reg1] >>= imm; // Logical right shift (assuming unsigned value)
set_flags(cpu, cpu->regs[reg1]);
break;
case SAR_RN_IMM:
reg1 = read_reg_number(cpu);
imm = read_mem(cpu, cpu->pc++);
// Arithmetic right shift; cast to signed before shifting.
cpu->regs[reg1] = ((int32_t) cpu->regs[reg1]) >> imm;
set_flags(cpu, cpu->regs[reg1]);
break;
case JMP:
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
cpu->pc = newPC;
break;
case JMP_REL:
imm = (int32_t) read_mem(cpu, cpu->pc++);
cpu->pc += imm;
break;
case CMP: {
// Compare two registers: set flags (Zero, Negative)
reg1 = read_reg_number(cpu);
reg2 = read_reg_number(cpu);
cmpResult = (int32_t) cpu->regs[reg1] - (int32_t) cpu->regs[reg2];
set_flags(cpu, cmpResult);
break;
}
case JE_BIT_RN: {
// Jump if bit in register set
reg1 = read_reg_number(cpu);
if (reg1 >= REG_COUNT) {
reg1 = REG_COUNT - 1;
}
uint8_t bit = read_mem(cpu, cpu->pc++);
if (bit > 7) {
bit = 7;
}
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
if (cpu->regs[reg1] & (1 << bit))
cpu->pc = newPC;
break;
}
case JE_BIT_ADDR: {
// Jump if bit in register set
addrTemp = read_mem32(cpu, cpu->pc);
if (addrTemp >= MEM_SIZE) {
addrTemp = MEM_SIZE - 1;
}
uint8_t bit = read_mem(cpu, cpu->pc++);
if (bit > 7) {
bit = 7;
}
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
if (cpu->memory[addrTemp] & (1 << bit))
cpu->pc = newPC;
break;
}
case JE: {
// Jump if equal (Zero flag set)
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
if (cpu->flags & 0x01)
cpu->pc = newPC;
break;
}
case JNE_BIT_RN: {
// Jump if bit in register set
reg1 = read_reg_number(cpu);
if (reg1 >= REG_COUNT) {
reg1 = REG_COUNT - 1;
}
uint8_t bit = read_mem(cpu, cpu->pc++);
if (bit > 7) {
bit = 7;
}
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
if (!(cpu->regs[reg1] & (1 << bit)))
cpu->pc = newPC;
break;
}
case JNE_BIT_ADDR: {
// Jump if bit in register set
addrTemp = read_mem32(cpu, cpu->pc);
if (addrTemp >= MEM_SIZE) {
addrTemp = MEM_SIZE - 1;
}
uint8_t bit = read_mem(cpu, cpu->pc++);
if (bit > 7) {
bit = 7;
}
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
if (!(cpu->memory[addrTemp] & (1 << bit)))
cpu->pc = newPC;
break;
}
case JNE: {
// Jump if not equal (Zero flag clear)
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
if (!(cpu->flags & 0x01))
cpu->pc = newPC;
break;
}
case JG: {
// Jump if greater: not negative and not zero.
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
if (((cpu->flags & 0x02) == 0) && ((cpu->flags & 0x01) == 0))
cpu->pc = newPC;
break;
}
case JL: {
// Jump if less: Negative flag set.
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
if (cpu->flags & 0x02)
cpu->pc = newPC;
break;
}
case JGE: {
// Jump if greater or equal: Zero flag set or negative clear.
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
if ((cpu->flags & 0x01) || ((cpu->flags & 0x02) == 0))
cpu->pc = newPC;
break;
}
case JLE: {
// Jump if less or equal: Negative flag set or Zero flag set.
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
if ((cpu->flags & 0x02) || (cpu->flags & 0x01))
cpu->pc = newPC;
break;
}
case CALL: {
// Push the current PC onto the stack, then jump to the address.
newPC = read_mem32(cpu, cpu->pc);
cpu->pc += 4;
// Push return address (current PC) onto the stack.
write_mem32(cpu, cpu->sp, cpu->pc);
cpu->sp -= 4;
cpu->pc = newPC;
break;
}
case RET:
// For RET, assume that the return address was stored on the stack.
cpu->pc = read_mem(cpu, ++cpu->sp);
break;
case PUSH: {
// Push register value onto the stack.
reg1 = read_reg_number(cpu);
write_mem(cpu, cpu->sp--, (uint8_t) cpu->regs[reg1]);
break;
}
case POP: {
// Pop a value from the stack into a register.
reg1 = read_reg_number(cpu);
cpu->regs[reg1] = read_mem(cpu, ++cpu->sp);
break;
}
case PUSHF:
// Push the flags register.
write_mem(cpu, cpu->sp--, cpu->flags);
break;
case POPF:
// Pop into the flags register.
cpu->flags = read_mem(cpu, ++cpu->sp);
break;
default:
printf("Unknown opcode: %d\n", opcode);
cpu->mode = Error;
}
}