start update to new i2c driver

This commit is contained in:
2025-04-15 16:31:54 +02:00
parent 38fafcc06c
commit cd8aca36a2
6 changed files with 237 additions and 271 deletions

View File

@@ -3,7 +3,7 @@
#include <stdbool.h>
#include "esp_system.h"
#include "driver/i2c.h"
#include "driver/i2c_master.h"
#include "src/lipton/cci.h"
#include "src/lipton/vospi.h"
@@ -73,8 +73,8 @@ WiFiServer lipSrv(8078);
// ===========================
// Enter your WiFi credentials
// ===========================
const char *ssid = "ssid";
const char *password = "password";
const char *ssid = "CansatDev";
const char *password = "plechovka";
void startCameraServer();
void setupLedFlash(int pin);
@@ -142,6 +142,8 @@ gpio_config(&usb_phy_conf);
// disable data from lepton
digitalWrite(LEP_CSN_PIN, 1);
printf("LEPTON INIT DONE");
camera_config_t config;
config.ledc_channel = LEDC_CHANNEL_0;
config.ledc_timer = LEDC_TIMER_0;
@@ -160,8 +162,6 @@ gpio_config(&usb_phy_conf);
config.pin_sccb_sda = -1;
config.pin_sccb_scl = -1;
config.sccb_i2c_port = I2C_MASTER_NUM;
config.pin_sccb_sda = -1;
config.sccb_i2c_port = 1;
config.pin_pwdn = PWDN_GPIO_NUM;
config.pin_reset = RESET_GPIO_NUM;
config.xclk_freq_hz = 20000000;
@@ -245,7 +245,7 @@ gpio_config(&usb_phy_conf);
startCameraServer();
printf("Camera Ready! Use 'http://");
printf(WiFi.localIP());
printf(WiFi.localIP().toString().c_str());
lipSrv.begin();
printf("' to connect\n");
}

View File

@@ -26,6 +26,7 @@
#include <stdbool.h>
#include <stdio.h>
#include <Arduino.h>
#include "lepton_system.h"
#define CCI_MAX_WAIT_TICKS 5000
@@ -39,95 +40,101 @@ static uint16_t cci_last_status;
// plus register starting address
static uint8_t burst_buf[1026];
//
// Forward declarations for primitive access methods
//
static int cci_write_register(uint16_t reg, uint16_t value);
static int cci_write_burst(uint16_t start, uint16_t word_len, uint16_t* buf);
static int cci_write_burst(uint16_t start, uint16_t word_len, uint16_t *buf);
static uint16_t cci_read_register(uint16_t reg);
static int cci_read_burst(uint16_t start, uint16_t word_len, uint16_t* buf);
static int cci_read_burst(uint16_t start, uint16_t word_len, uint16_t *buf);
static uint32_t cci_wait_busy_clear();
static void cci_wait_busy_clear_check(char* cmd);
static void cci_wait_busy_clear_check(char *cmd);
//
// CCI API
//
/**
* Write 0 (equivalent to run_cmd) to 512 16-bit words to the lepton and issue
* the specified command. Lengths > 16 words are written to the BLOCK data buffer.
*/
void cci_set_reg(uint16_t cmd, int len, uint16_t* buf)
void cci_set_reg(uint16_t cmd, int len, uint16_t *buf)
{
char cmd_buf[11]; // sized for 'cmd 0xNNNN<NULL>'
char cmd_buf[11]; // sized for 'cmd 0xNNNN<NULL>'
int ret = 1;
cci_last_status_error = false;
cci_wait_busy_clear();
if ((len > 0) && (len <= 16)) {
if ((len > 0) && (len <= 16))
{
ret = cci_write_burst(CCI_REG_DATA_0, len, buf);
} else if ((len > 16) && (len <= 512)) {
}
else if ((len > 16) && (len <= 512))
{
ret = cci_write_burst(CCI_BLOCK_BUF_0, len, buf);
} else if (len > 512) {
}
else if (len > 512)
{
ret = 0;
}
if (ret == 1) {
if (len > 0) {
if (ret == 1)
{
if (len > 0)
{
sprintf(cmd_buf, "CMD 0x%4x\n", cmd);
cci_write_register(CCI_REG_DATA_LENGTH, len);
} else {
}
else
{
sprintf(cmd_buf, "RUN 0x%4x\n", cmd);
}
cci_write_register(CCI_REG_COMMAND, cmd);
cci_wait_busy_clear_check(cmd_buf);
} else {
}
else
{
cci_last_status = 0;
cci_last_status_error = true;
}
}
/**
* Read up to 512 16-bit words form the lepton with the specified command. Lengths > 16
* words are read from the BLOCK data buffer.
*/
void cci_get_reg(uint16_t cmd, int len, uint16_t* buf)
void cci_get_reg(uint16_t cmd, int len, uint16_t *buf)
{
char cmd_buf[11]; // sized for 'cmd 0xNNNN<NULL>'
char cmd_buf[11]; // sized for 'cmd 0xNNNN<NULL>'
sprintf(cmd_buf, "CMD 0x%4x", cmd);
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_LENGTH, len);
cci_write_register(CCI_REG_COMMAND, cmd);
cci_wait_busy_clear_check(cmd_buf);
if ((len > 0) && (len <= 16)) {
(void) cci_read_burst(CCI_REG_DATA_0, len, buf);
} else if ((len > 16) && (len <= 512)) {
(void) cci_read_burst(CCI_BLOCK_BUF_0, len, buf);
if ((len > 0) && (len <= 16))
{
(void)cci_read_burst(CCI_REG_DATA_0, len, buf);
}
else if ((len > 16) && (len <= 512))
{
(void)cci_read_burst(CCI_BLOCK_BUF_0, len, buf);
}
}
/**
* Return true if previous command succeeded as detected by cci_wait_busy_clear_check
*/
bool cci_command_success(uint16_t* status)
bool cci_command_success(uint16_t *status)
{
*status = cci_last_status;
return !cci_last_status_error;
}
/**
* Ping the camera.
* Returns 0 for a successful ping
@@ -138,24 +145,28 @@ uint32_t cci_run_ping()
{
uint32_t res;
uint8_t lep_res;
cci_wait_busy_clear();
cci_write_register(CCI_REG_COMMAND, CCI_CMD_SYS_RUN_PING);
res = cci_wait_busy_clear();
lep_res = (res & 0x000FF00) >> 8; // 8-bit Response Error Code: 0=LEP_OK
if (res == 0x00010000) {
if (res == 0x00010000)
{
return 0x100;
} else if (lep_res == 0x00) {
}
else if (lep_res == 0x00)
{
return 0;
} else {
}
else
{
// Convert negative Lepton Response Error Code to a positive number to return
lep_res = ~lep_res + 1;
return lep_res;
}
}
/**
* Request that a flat field correction occur immediately.
*/
@@ -166,7 +177,6 @@ void cci_run_ffc()
cci_wait_busy_clear_check("CCI_CMD_SYS_RUN_FFC");
}
/**
* Get the system uptime.
*/
@@ -176,13 +186,12 @@ uint32_t cci_get_uptime()
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_SYS_GET_UPTIME);
cci_wait_busy_clear_check("CCI_CMD_SYS_GET_UPTIME");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Get the AUX (case) temperature in Kelvin x 100 (16-bit result).
*/
@@ -192,13 +201,12 @@ uint32_t cci_get_aux_temp()
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_SYS_GET_AUX_TEMP);
cci_wait_busy_clear_check("CCI_CMD_SYS_GET_AUX_TEMP");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Get the FPA (sensor) temperature in Kelvin x 100 (16-bit result).
*/
@@ -208,20 +216,19 @@ uint32_t cci_get_fpa_temp()
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_SYS_GET_FPA_TEMP);
cci_wait_busy_clear_check("CCI_CMD_SYS_GET_FPA_TEMP");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Change the telemetry enable state.
*/
void cci_set_telemetry_enable_state(cci_telemetry_enable_state_t state)
{
uint32_t value = state;
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_0, value & 0xffff);
cci_write_register(CCI_REG_DATA_1, value >> 16 & 0xffff);
@@ -230,7 +237,6 @@ void cci_set_telemetry_enable_state(cci_telemetry_enable_state_t state)
cci_wait_busy_clear_check("CCI_CMD_SYS_SET_TELEMETRY_ENABLE_STATE");
}
/**
* Get the telemetry enable state.
*/
@@ -240,20 +246,19 @@ uint32_t cci_get_telemetry_enable_state()
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_SYS_GET_TELEMETRY_ENABLE_STATE);
cci_wait_busy_clear_check("CCI_CMD_SYS_GET_TELEMETRY_ENABLE_STATE");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Change the telemetry location.
*/
void cci_set_telemetry_location(cci_telemetry_location_t location)
{
uint32_t value = location;
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_0, value & 0xffff);
cci_write_register(CCI_REG_DATA_1, value >> 16 & 0xffff);
@@ -262,7 +267,6 @@ void cci_set_telemetry_location(cci_telemetry_location_t location)
cci_wait_busy_clear_check("CCI_CMD_SYS_SET_TELEMETRY_LOCATION");
}
/**
* Get the telemetry location.
*/
@@ -272,20 +276,19 @@ uint32_t cci_get_telemetry_location()
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_SYS_GET_TELEMETRY_LOCATION);
cci_wait_busy_clear_check("CCI_CMD_SYS_GET_TELEMETRY_LOCATION");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Get the Gain Mode
*/
void cci_set_gain_mode(cc_gain_mode_t mode)
{
uint32_t value = mode;
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_0, value & 0xffff);
cci_write_register(CCI_REG_DATA_1, value >> 16 & 0xffff);
@@ -294,7 +297,6 @@ void cci_set_gain_mode(cc_gain_mode_t mode)
cci_wait_busy_clear_check("CCI_CMD_SYS_SET_GAIN_MODE");
}
/**
* Set the gain mode
*/
@@ -304,20 +306,19 @@ uint32_t cci_get_gain_mode()
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_SYS_GET_GAIN_MODE);
cci_wait_busy_clear_check("CCI_CMD_SYS_GET_GAIN_MODE");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Change the radiometry enable state.
*/
void cci_set_radiometry_enable_state(cci_radiometry_enable_state_t state)
{
uint32_t value = state;
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_0, value & 0xffff);
cci_write_register(CCI_REG_DATA_1, value >> 16 & 0xffff);
@@ -326,7 +327,6 @@ void cci_set_radiometry_enable_state(cci_radiometry_enable_state_t state)
cci_wait_busy_clear_check("CCI_CMD_RAD_SET_RADIOMETRY_ENABLE_STATE");
}
/**
* Get the radiometry enable state.
*/
@@ -336,17 +336,16 @@ uint32_t cci_get_radiometry_enable_state()
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_RAD_GET_RADIOMETRY_ENABLE_STATE);
cci_wait_busy_clear_check("CCI_CMD_RAD_GET_RADIOMETRY_ENABLE_STATE");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Set the radiometry flux parameters
*/
void cci_set_radiometry_flux_linear_params(cci_rad_flux_linear_params_t* params)
void cci_set_radiometry_flux_linear_params(cci_rad_flux_linear_params_t *params)
{
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_0, params->sceneEmissivity);
@@ -362,11 +361,10 @@ void cci_set_radiometry_flux_linear_params(cci_rad_flux_linear_params_t* params)
cci_wait_busy_clear_check("CCI_CMD_RAD_SET_RADIOMETRY_FLUX_LINEAR_PARAMS");
}
/**
* Get the radiometry flux parameters
*/
bool cci_get_radiometry_flux_linear_params(cci_rad_flux_linear_params_t* params)
bool cci_get_radiometry_flux_linear_params(cci_rad_flux_linear_params_t *params)
{
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_LENGTH, 8);
@@ -380,18 +378,17 @@ bool cci_get_radiometry_flux_linear_params(cci_rad_flux_linear_params_t* params)
params->TAtmK = cci_read_register(CCI_REG_DATA_5);
params->reflWindow = cci_read_register(CCI_REG_DATA_6);
params->TReflK = cci_read_register(CCI_REG_DATA_7);
return !cci_last_status_error;
}
/**
* Change the radiometry TLinear enable state.
*/
void cci_set_radiometry_tlinear_enable_state(cci_radiometry_tlinear_enable_state_t state)
{
uint32_t value = state;
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_0, value & 0xffff);
cci_write_register(CCI_REG_DATA_1, value >> 16 & 0xffff);
@@ -400,7 +397,6 @@ void cci_set_radiometry_tlinear_enable_state(cci_radiometry_tlinear_enable_state
cci_wait_busy_clear_check("CCI_CMD_RAD_SET_RADIOMETRY_TLINEAR_ENABLE_STATE");
}
/**
* Get the radiometry TLinear enable state.
*/
@@ -410,20 +406,19 @@ uint32_t cci_get_radiometry_tlinear_enable_state()
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_RAD_GET_RADIOMETRY_TLINEAR_ENABLE_STATE);
cci_wait_busy_clear_check("CCI_CMD_RAD_GET_RADIOMETRY_TLINEAR_ENABLE_STATE");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Set the radiometry TLinear Auto Resolution
*/
void cci_set_radiometry_tlinear_auto_res(cci_radiometry_tlinear_auto_res_state_t state)
{
uint32_t value = state;
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_0, value & 0xffff);
cci_write_register(CCI_REG_DATA_1, value >> 16 & 0xffff);
@@ -432,7 +427,6 @@ void cci_set_radiometry_tlinear_auto_res(cci_radiometry_tlinear_auto_res_state_t
cci_wait_busy_clear_check("CCI_CMD_RAD_SET_RADIOMETRY_TLINEAR_AUTO_RES");
}
/**
* Get the radiometry TLinear Auto Resolution
*/
@@ -442,13 +436,12 @@ uint32_t cci_get_radiometry_tlinear_auto_res()
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_RAD_GET_RADIOMETRY_TLINEAR_AUTO_RES);
cci_wait_busy_clear_check("CCI_CMD_RAD_GET_RADIOMETRY_TLINEAR_AUTO_RES");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Set the Radiometry Spotmeter Region-of-interest
*/
@@ -464,11 +457,10 @@ void cci_set_radiometry_spotmeter(uint16_t r1, uint16_t c1, uint16_t r2, uint16_
cci_wait_busy_clear_check("CCI_CMD_RAD_SET_RADIOMETRY_SPOT_ROI");
}
/**
* Get the Radiometry Spotmeter Region-of-interest
*/
bool cci_get_radiometry_spotmeter(uint16_t* r1, uint16_t* c1, uint16_t* r2, uint16_t* c2)
bool cci_get_radiometry_spotmeter(uint16_t *r1, uint16_t *c1, uint16_t *r2, uint16_t *c2)
{
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_LENGTH, 4);
@@ -478,11 +470,10 @@ bool cci_get_radiometry_spotmeter(uint16_t* r1, uint16_t* c1, uint16_t* r2, uint
*c1 = cci_read_register(CCI_REG_DATA_1);
*r2 = cci_read_register(CCI_REG_DATA_2);
*c2 = cci_read_register(CCI_REG_DATA_3);
return !cci_last_status_error;
}
/**
* Get the AGC enable state.
*/
@@ -492,20 +483,19 @@ uint32_t cci_get_agc_enable_state()
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_AGC_GET_AGC_ENABLE_STATE);
cci_wait_busy_clear_check("CCI_CMD_AGC_GET_AGC_ENABLE_STATE");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Set the AGC enable state.
*/
void cci_set_agc_enable_state(cci_agc_enable_state_t state)
{
uint32_t value = state;
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_0, value & 0xffff);
cci_write_register(CCI_REG_DATA_1, value >> 16 & 0xffff);
@@ -514,7 +504,6 @@ void cci_set_agc_enable_state(cci_agc_enable_state_t state)
cci_wait_busy_clear_check("CCI_CMD_AGC_SET_AGC_ENABLE_STATE");
}
/**
* Get the AGC calc enable state.
*/
@@ -524,20 +513,19 @@ uint32_t cci_get_agc_calc_enable_state()
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_AGC_GET_CALC_ENABLE_STATE);
cci_wait_busy_clear_check("CCI_CMD_AGC_GET_CALC_ENABLE_STATE");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Set the AGC calc enable state.
*/
void cci_set_agc_calc_enable_state(cci_agc_enable_state_t state)
{
uint32_t value = state;
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_0, value & 0xffff);
cci_write_register(CCI_REG_DATA_1, value >> 16 & 0xffff);
@@ -558,7 +546,6 @@ void cc_run_oem_reboot()
cci_wait_busy_clear_check("CCI_CMD_OEM_RUN_REBOOT");
}
/**
* Get the GPIO mode.
*/
@@ -566,22 +553,21 @@ uint32_t cci_get_gpio_mode()
{
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_LENGTH, 2);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_OEM_GET_GPIO_MODE);
cci_write_register(CCI_REG_COMMAND, CCI_CMD_OEM_GET_GPIO_MODE);
cci_wait_busy_clear_check("CCI_CMD_OEM_GET_GPIO_MODE");
uint16_t ls_word = cci_read_register(CCI_REG_DATA_0);
uint16_t ms_word = cci_read_register(CCI_REG_DATA_1);
return ms_word << 16 | ls_word;
}
/**
* Set the GPIO mode.
*/
void cci_set_gpio_mode(cci_gpio_mode_t mode)
{
uint32_t value = mode;
cci_wait_busy_clear();
cci_write_register(CCI_REG_DATA_0, value & 0xffff);
cci_write_register(CCI_REG_DATA_1, value >> 16 & 0xffff);
@@ -590,12 +576,11 @@ void cci_set_gpio_mode(cci_gpio_mode_t mode)
cci_wait_busy_clear_check("CCI_CMD_OEM_SET_GPIO_MODE");
}
/**
* Get the FLIR systems part number
* - call with a 32-character buffer
*/
void cci_get_part_number(char* pn)
void cci_get_part_number(char *pn)
{
bool low_half = true;
int i = 0;
@@ -604,21 +589,25 @@ void cci_get_part_number(char* pn)
int t = 0; // maximum tick count
cci_get_reg(CCI_CMD_OEM_GET_PART_NUM, 16, cci_buf);
*pn = (char) (cci_buf[0] & 0xFF);
while ((*pn != 0) && (i<16) && (t++ < CCI_MAX_WAIT_TICKS)) {
*pn = (char)(cci_buf[0] & 0xFF);
while ((*pn != 0) && (i < 16) && (t++ < CCI_MAX_WAIT_TICKS))
{
low_half = !low_half;
if (low_half) {
*(++pn) = (char) (cci_buf[i] & 0xFF);
} else {
*(++pn) = (char) (cci_buf[i] >> 8);
if (low_half)
{
*(++pn) = (char)(cci_buf[i] & 0xFF);
}
else
{
*(++pn) = (char)(cci_buf[i] >> 8);
i++;
}
}
*(++pn) = 0;
}
#define TAG_CCI "[CCI]"
//
// Primitive access methods
@@ -634,97 +623,113 @@ static int cci_write_register(uint16_t reg, uint16_t value)
reg >> 8 & 0xff,
reg & 0xff,
value >> 8 & 0xff,
value & 0xff
};
if (i2c_master_write_slave(CCI_ADDRESS, write_buf, sizeof(write_buf)) != ESP_OK) {
printf("[CCI] Error: failed to write CCI register %02x with value %02x\n", reg, value);
value & 0xff};
esp_err_t ret = i2c_master_transmit(LEPTON_DEV_HANDLE, write_buf, sizeof(write_buf), I2C_TIMEOUT_MS_VALUE);
if (ret == ESP_OK)
{
ESP_LOGV(TAG_CCI, "Write to register 0x%04X successful (Value: 0x%04X)", reg, value);
return 1;
}
else
{
ESP_LOGE(TAG_CCI, "Write to register 0x%04X failed: %s", reg, esp_err_to_name(ret));
return -1;
};
return 1;
}
}
/**
* Burst write a group of CCI data registers
*/
static int cci_write_burst(uint16_t start, uint16_t word_len, uint16_t* buf)
static int cci_write_burst(uint16_t start, uint16_t word_len, uint16_t *buf)
{
int i;
// Create the i2c transaction buffer
burst_buf[0] = start >> 8;
burst_buf[1] = start & 0xFF;
for (i=1; i<=word_len; i++) {
burst_buf[i*2] = *buf >> 8;
burst_buf[i*2 + 1] = *buf++ & 0xFF;
size_t bufSize = sizeof(*buf) * (1 + word_len);
buffer = malloc(bufSize);
// Create the i2c transaction buffer
buffer[0] = start >> 8;
buffer[1] = start & 0xFF;
for (i = 1; i <= word_len; i++)
{
buffer[i * 2] = *buf >> 8;
buffer[i * 2 + 1] = *buf++ & 0xFF;
}
// Execute the burs
if (i2c_master_write_slave(CCI_ADDRESS, burst_buf, word_len*2 + 2) != ESP_OK) {
printf("[CCI] Error: failed to burst write CCI register %02x with length %d\n", start, word_len);
esp_err_t ret = i2c_master_transmit(LEPTON_DEV_HANDLE, buffer, sizeof(buffer), I2C_TIMEOUT_MS_VALUE);
if (ret == ESP_OK)
{
ESP_LOGV(TAG_CCI, "Burst write to register 0x%04X successful (Value: 0x%04X)", reg_addr, value);
return 1;
}
else
{
ESP_LOGE(TAG_CCI, "Burst write to register 0x%04X failed: %s", reg_addr, esp_err_to_name(ret));
return -1;
};
return 1;
}
}
/**
* Read a CCI register.
*/
static uint16_t cci_read_register(uint16_t reg)
{
uint8_t buf[2];
// Write the register address
buf[0] = reg >> 8;
buf[1] = reg & 0xff;
if (i2c_master_write_slave(CCI_ADDRESS, buf, sizeof(buf)) != ESP_OK) {
printf("[CCI] Error: failed to write CCI register %02x\n", reg);
return -1;
}
// Read
if (i2c_master_read_slave(CCI_ADDRESS, buf, sizeof(buf)) != ESP_OK) {
printf("[CCI] Error: failed to read from CCI register %02x\n", reg);
}
return buf[0] << 8 | buf[1];
}
/**
* Burst read a group of CCI data registers
* @brief Reads a 16-bit value from a specific register of an I2C device.
*
* @param dev_handle I2C device handle
* @param reg_addr Register address to read from
* @return value The register value
*/
static int cci_read_burst(uint16_t start, uint16_t word_len, uint16_t* buf)
uint16_t cci_read_register(uint16_t reg_addr)
{
int i;
// Write the starting address
burst_buf[0] = start >> 8;
burst_buf[1] = start & 0xFF;
if (i2c_master_write_slave(CCI_ADDRESS, burst_buf, 2) != ESP_OK) {
printf("[CCI] Error: failed to write CCI register %02x\n", start);
uint8_t buffer[2];
esp_err_t ret = i2c_master_transmit_receive(LEPTON_DEV_HANDLE, &reg_addr, sizeof(reg_addr), buffer, sizeof(buffer), I2C_TIMEOUT_MS_VALUE);
if (ret == ESP_OK)
{
ESP_LOGV(TAG_CCI, "Read from register 0x%04X successful (Value: 0x%04X)", reg_addr, *value);
return (((uint16_t)(buffer[0] & 0xFF)) << 8) | (buffer[1] & 0xFF);
}
else
{
ESP_LOGE(TAG_CCI, "Read from register 0x%04X failed: %s", reg_addr, esp_err_to_name(ret));
return -1;
}
// Read
if (i2c_master_read_slave(CCI_ADDRESS, burst_buf, word_len*2) != ESP_OK) {
printf("[CCI] Error: failed to burst read from CCI register %02x with length %d\n", start, word_len);
return -1;
}
// Copy data out
for (i=0; i<word_len; i++) {
*buf++ = burst_buf[i*2] << 8 | burst_buf[i*2 + 1];
}
return 1;
}
/**
* @brief Reads a burst of 16-bit values from specific registers of an I2C device.
*
* @param dev_handle I2C device handle
* @param start Register address to read from
* @param word_len Register address to read from
* @return esp_err_t ESP_OK on success, or an error code
*/
int cci_read_burst(uint16_t start, uint16_t word_len, uint16_t *buf)
{
if (!buf)
{
return -1;
}
size_t bufSize = word_len * sizeof(*buf);
buffer = malloc(bufSize);
esp_err_t ret = i2c_master_transmit_receive(LEPTON_DEV_HANDLE, &reg_addr, sizeof(reg_addr), buffer, bufSize, I2C_TIMEOUT_MS_VALUE);
if (ret == ESP_OK)
{
ESP_LOGV(TAG_CCI, "Read from register 0x%04X successful (Value: 0x%04X)", reg_addr, *value);
for (int i = 0; i < word_len; i++)
{ // CHECK IF THIS IS NEEDED
*buf++ = buffer[i * 2] << 8 | buffer[i * 2 + 1];
}
return 1;
}
else
{
ESP_LOGE(TAG_CCI, "Read from register 0x%04X failed: %s", reg_addr, esp_err_to_name(ret));
return -1;
}
}
/**
* Wait for busy to be clear in the status register
@@ -739,8 +744,10 @@ static uint32_t cci_wait_busy_clear()
int t = 0; // maximum tick count
// Wait for booted, not busy
while (((buf[1] & 0x07) != 0x06) && !err) {
if (t++ >= CCI_MAX_WAIT_TICKS) {
while (((buf[1] & 0x07) != 0x06) && !err)
{
if (t++ >= CCI_MAX_WAIT_TICKS)
{
err = true;
break;
}
@@ -748,46 +755,52 @@ static uint32_t cci_wait_busy_clear()
// Write STATUS register address
buf[0] = 0x00;
buf[1] = 0x02;
if (i2c_master_write_slave(CCI_ADDRESS, buf, sizeof(buf)) != ESP_OK) {
printf("[CCI] Error: failed to set STATUS register\n");
err = true;
};
// Read register - low bits in buf[1]
if (i2c_master_read_slave(CCI_ADDRESS, buf, sizeof(buf)) != ESP_OK) {
printf("[CCI] Error: failed to read STATUS register\n");
err = true;
esp_err_t ret = i2c_master_transmit_receive(LEPTON_DEV_HANDLE, &reg_addr, sizeof(reg_addr), buf, sizeof(buf), I2C_TIMEOUT_MS_VALUE);
if (ret == ESP_OK)
{
ESP_LOGV(TAG_CCI, "Read from register 0x%04X successful (Value: 0x%04X)", reg_addr, *value);
}
else
{
ESP_LOGE(TAG_CCI, "Read from register 0x%04X failed: %s", reg_addr, esp_err_to_name(ret));
return -1;
}
}
if (err) {
if (err)
{
return 0x00010000;
} else {
}
else
{
return (buf[0] << 8) | buf[1];
}
}
/**
* Wait for busy to be clear in the status register and check the result
* printing an error if detected
*/
static void cci_wait_busy_clear_check(char* cmd)
static void cci_wait_busy_clear_check(char *cmd)
{
int8_t response;
int8_t response;
uint32_t t32;
cci_last_status_error = false;
t32 = cci_wait_busy_clear();
cci_last_status = t32 & 0xFFFF;
if (t32 == 0x00010000) {
if (t32 == 0x00010000)
{
printf("[CCI] Error: cmd: %s failed wait_busy_clear\n", cmd);
cci_last_status_error = true;
} else {
response = (int8_t) ((t32 & 0x0000FF00) >> 8);
if (response < 0) {
}
else
{
response = (int8_t)((t32 & 0x0000FF00) >> 8);
if (response < 0)
{
printf("[CCI] Error: %s returned %d\n", cmd, response);
}
}

View File

@@ -33,7 +33,6 @@
// Device characteristics
#define CCI_WORD_LENGTH 0x02
#define CCI_ADDRESS 0x2A
// CCI register locations
#define CCI_REG_STATUS 0x0002

View File

@@ -24,12 +24,11 @@
*/
// #include "system_config.h"
#include "i2c.h"
#include "driver/i2c.h"
#include "driver/i2c_master.h"
#include "lepton_system.h"
// #include "freertos/FreeRTOS.h"
// #include "freertos/semphr.h"
//
// I2C API
//
@@ -37,74 +36,26 @@
/**
* i2c master initialization
*/
esp_err_t i2c_master_init(int scl_pin, int sda_pin)
esp_err_t i2c_master_init(gpio_num_t scl_pin, gpio_num_t sda_pin)
{
int i2c_master_port = I2C_MASTER_NUM;
i2c_config_t conf;
// Configure the I2C controller in master mode using the pins provided
conf.mode = I2C_MODE_MASTER;
conf.sda_io_num = sda_pin;
conf.sda_pullup_en = GPIO_PULLUP_ENABLE;
conf.scl_io_num = scl_pin;
conf.scl_pullup_en = GPIO_PULLUP_ENABLE;
conf.master.clk_speed = I2C_MASTER_FREQ_HZ;
conf.clk_flags = 0;
esp_err_t err = i2c_param_config((i2c_port_t)i2c_master_port, &conf);
if (err != ESP_OK) {
return err;
}
// Install the I2C driver
return i2c_driver_install((i2c_port_t)i2c_master_port, conf.mode,
I2C_MASTER_RX_BUF_LEN,
I2C_MASTER_TX_BUF_LEN, 0);
}
/**
* Read esp-i2c-slave
*
* _______________________________________________________________________________________
* | start | slave_addr + rd_bit +ack | read n-1 bytes + ack | read 1 byte + nack | stop |
* --------|--------------------------|----------------------|--------------------|------|
*
*/
esp_err_t i2c_master_read_slave(uint8_t addr7, uint8_t *data_rd, size_t size)
{
if (size == 0) {
return ESP_OK;
}
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (addr7 << 1) | I2C_MASTER_READ, ACK_CHECK_EN);
if (size > 1) {
i2c_master_read(cmd, data_rd, size - 1, ACK_VAL);
}
i2c_master_read_byte(cmd, data_rd + size - 1, NACK_VAL);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin((i2c_port_t)I2C_MODE_MASTER, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret;
}
i2c_master_bus_config_t i2c0_bus_cfg = {
.i2c_port = I2C_MASTER_NUM,
.sda_io_num = sda_pin,
.scl_io_num = scl_pin,
.clk_source = I2C_CLK_SRC_DEFAULT,
.glitch_ignore_cnt = 7,
};
ESP_ERROR_CHECK(i2c_new_master_bus(&i2c0_bus_cfg, &i2c0_bus_hdl));
i2c_device_config_t LEPTON_DEV_CFG = {
.dev_addr_length = I2C_ADDR_BIT_LEN_7,
.device_address = CCI_ADDRESS,
.scl_speed_hz = I2C_MASTER_FREQ_HZ,
};
/**
* Write esp-i2c-slave
*
* ___________________________________________________________________
* | start | slave_addr + wr_bit + ack | write n bytes + ack | stop |
* --------|---------------------------|----------------------|------|
*
*/
esp_err_t i2c_master_write_slave(uint8_t addr7, uint8_t *data_wr, size_t size)
{
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (addr7 << 1) | I2C_MASTER_WRITE, ACK_CHECK_EN);
i2c_master_write(cmd, data_wr, size, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin((i2c_port_t)I2C_MODE_MASTER, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret;
}
ESP_ERROR_CHECK(i2c_master_bus_add_device(i2c0_bus_hdl, &LEPTON_DEV_CFG, &LEPTON_DEV_HANDLE));
return ESP_OK;
}

View File

@@ -26,7 +26,7 @@
#include <stdint.h>
#include "esp_system.h"
#include "driver/i2c.h"
#include "driver/i2c_master.h"
//
// I2C constants
@@ -41,10 +41,10 @@
#define ACK_VAL (i2c_ack_type_t)0x0
#define NACK_VAL (i2c_ack_type_t)0x1
i2c_master_bus_handle_t i2c0_bus_hdl; //migrate to newer
i2c_master_dev_handle_t LEPTON_DEV_HANDLE;
//
// I2C API
//
esp_err_t i2c_master_init(int scl_pin, int sda_pin);
esp_err_t i2c_master_read_slave(uint8_t addr7, uint8_t *data_rd, size_t size);
esp_err_t i2c_master_write_slave(uint8_t addr7, uint8_t *data_wr, size_t size);
esp_err_t i2c_master_init(gpio_num_t scl_pin, gpio_num_t sda_pin);

View File

@@ -19,8 +19,11 @@
#define LEP_CSN_PIN 14 // SPI_CS 10
#define LEP_RESET_PIN 20 // RESET_L 17
#define I2C_MASTER_SDA_PIN 4 // SDA 5
#define I2C_MASTER_SCL_PIN 5 // SCL 8
#define I2C_TIMEOUT_MS_VALUE 20
#define I2C_MASTER_SDA_PIN GPIO_NUM_4 // SDA 5
#define I2C_MASTER_SCL_PIN GPIO_NUM_5 // SCL 8
#define CCI_ADDRESS 0x2A
// I2C
#define I2C_MASTER_NUM I2C_NUM_1