Note: this required renaming the base node name for the oblate spheroid
object, which previously had been named simply "sphere". The result is
that all such nodes in an old world will change to actual spheres.
Since this includes a formspec change, machines will have to be dug and
re-placed to get the new program button to show up, and/or if the image
on the Oblate Spheroid button shows wrongly.
Copy the textures made by RealBadAngel (under WTFPL) from unified inventory to technic to avoid minetest not finding them when unified inventory is not installed.
Replacing the extractor-based system, uranium to be used as reactor fuel
must now be enriched in stages using the centrifuge. Uranium metal can
exist at 36 levels of fissile content, from 0.0% to 3.5% in steps of 0.1%.
One round of centrifuging splits two dust of a particular grade in to one
dust each of the two neighbouring grades. Uranium of each grade can exist
as dust, ingot, and block, with all the regular metal processes to convert
between them. Uranium from ore exists in lump form, and is 0.7% fissle.
The blocks are radioactive to a degree dependent on fissile content.
Thus the chemical refinement and processing of uranium now follows the
standard pattern for metals, and is orthogonal to isotopic enrichment.
Each form of uranium (dust, ingot, block) intentionally looks identical
regardless of fissile grade.
If technic_worldgen is used alone, it defines only one grade of uranium
(as before), but defines it in the regular metal pattern, with lump, ingot
produced by cooking lump, and block crafted from ingots. It identifies
the metal only as "uranium". The multiple grades of uranium are defined
by the technic mod, which identifies each grade as "N.N%-fissile
uranium". The single grade that was registered by technic_worldgen
is redefined to be described specifically as "0.7%-fissile uranium".
For the redefinition to work, technic_worldgen must load before technic,
so technic now declares a dependency on technic_worldgen.
Each fuel rod is made from five 3.5%-fissile ingots, each of which in
turn requires one to start with five 0.7%-fissile dust, so each fuel rod
is now derived from 12.5 uranium lumps (or 25 if the lumps were first
cooked rather than being ground). This replaces the 20 lumps required
by the former recipes. After setting up and priming the centrifuge
cascade, enriching a full set of fuel for the reactor (six fuel rods)
takes 14700 centrifuge operations. It's intended to be a practical
necessity to automate the centrifuge. In the absence of EU upgrades
for the centrifuges, these operations consume 5.88e8 EU, about 0.97%
of the 6.048e10 EU that the fuel set will produce in the reactor.
The intent is that, in this respect as in others, operating a reactor
should carry a very high up-front cost, but ultimately be very profitable.
The centrifuge, currently only existing in an MV variety, is a machine
that separates a mixed substance into its constituents. Currently the
main use is to reverse alloying of metals. The alloy separation recipes
intentionally only operate on the dust form of metals, making this less
convenient than the original alloying. It also only recovers metal
constituents, not the carbon that went into cast iron or carbon steel.
This change incidentally generalises the technic recipe and
machine infrastructure to handle recipes with multiple outputs.
As unified_inventory's craft guide can't yet handle that, these recipes
are not registered there.
Reactor `explosion' now replaces the reactor core with a corium source
node. Corium is a new liquid, which flows a bit like lava, but has
the additional feature of destroying nodes to which it is adjacent.
It also randomly turns into a solid form, chernobylite, which makes an
attractive building block. It thus gradually melts its way through the
reactor shielding layers; a meltdown gets worse over time if not cleaned
up promptly.
The mechanism for an active reactor core to damage nearby players is
generalised into a "radioactive" node group. Corium and chernobylite
are radioactive, to varying degrees. Players receive a varying amount of
damage from a radioactive node, depending on proximity. Staying outside
a reactor cube is sufficient to be safe from the active core, but not
sufficient to be safe from a melted core.
LV cables are now paper-insulated, rather than uninsulated (which made
no sense). MV cables are rubber-insulated as before. HV cables are now
plastic-insulated (which they already visually appeared to be). MV and
HV cables are still crafted by adding insulation onto lower-tier cable,
rather than by insulating raw copper; this matches the way machines are
upgraded between tiers rather than crafted afresh.
The casing is intended to be an ingredient in craft recipes for machines.
It isn't actually used in any recipes yet. Although mainly a craft
item, it is defined as a node type, mainly to get an appropriately cubic
inventory image. It is incidentally possible to place it as a node:
this makes some sense, although the empty machine casing isn't actually
useful as a node.
The new tool will say whether a target block type is present in a
specified region, to allow for more targeted digging. It is deliberately
quite weak, with several limitations: only stores enough charge for a
small number of shots; target can only be set by pointing at an example
node; range is limited; accuracy is less than 100%. Some of these
limitations should probably be ameliorated, but not entirely eliminated,
in the future when we have a better idea of game balance.
The inventory image is only a placeholder.
To support the glooptest mod (successor of gloopores), define the
gloopores lump->dust grinding recipes if either of the mods is available.
(Formerly only "gloopores" was supported.) Define kalite dust item,
which was previously missing. Make gloop ingots grindable to dust as the
non-gloop ingots already are; incidentally refactor this to automatically
make ingots grindable whenever the ingot can be made by cooking dust.
Add textures for all the gloop dusts. Do the "Steel"->"Iron" renaming
for glooptest-defined tools and items.
Override the default mod's iron/steel substance, replacing it with three
metals: wrought iron (pure iron), carbon steel (iron alloyed with a little
carbon), and cast iron (iron alloyed with lots of carbon). Wrought iron
is easiest to refine, then cast iron, and carbon steel the most difficult,
matching the historical progression. Recipes that used default steel are
changed to use one of the three, the choice of alloy for each application
being both somewhat realistic and also matching up with game progression.
The default:steel{_ingot,block} items are identified specifically with
wrought iron. This makes the default refining recipes work appropriately.
Iron-using recipes defined outside technic are thus necessarily
reinterpreted to use wrought iron, which is mostly appropriate.
Some objects are renamed accordingly.
Rather than use the default steel textures for wrought iron, with technic
providing textures for the other two, technic now provides textures for
all three metals. This avoids problems that would occur with texture
packs that provide default_steel_{ingot,block} textures that are not
intended to support this wrought-iron/carbon-steel/cast-iron distinction.
A texture pack can provide a distinct set of three textures specifically
for the situation where this distinction is required.
Incidentally make grinding and alloy cooking recipes work correctly when
ingredients are specified by alias.
Still needs some work. I am pushing it to get ideas and feedback.
Also fix some bugs in the LV coal generator that were found while making
the nuclear reactor.
Conflicts:
technic/init.lua
Doing that required some changes to the batteries in that they have new meta data
aligned with the other machines.
I also added a BA type machine in addition to the existing PR and RE types.
This way it is easy to find he batteries on the network.
Added transformers for all voltage tiers.
I changed the recipes for solar panels to make them less expensive.
I also changed the output of the individual panel and made the arrays provie the real "oomph" :-)
Solar panels and arrays are dependent on light level, time of day and height abive ground (0) for output and cheating with torches and stuff.
Textures added.
Fixed bugs in the hv battery box. It was not working at all. I don't understand the hv box top texture though???
I have a sense that all machines connected to the battery boxes are taking the same amount of juice from the box.
A method of taking a little or a lot would be nice.