Files
meshcore-wch/User/main.c
2025-12-30 08:04:26 +01:00

265 lines
8.6 KiB
C

/********************************** (C) COPYRIGHT *******************************
* File Name : main.c
* Author : WCH
* Version : V1.0.0
* Date : 2021/06/06
* Description : Main program body.
*********************************************************************************
* Copyright (c) 2021 Nanjing Qinheng Microelectronics Co., Ltd.
* Attention: This software (modified or not) and binary are used for
* microcontroller manufactured by Nanjing Qinheng Microelectronics.
*******************************************************************************/
/*
*@Note
*task1 and task2 alternate printing
*/
#include "FreeRTOS.h"
#include "ch32v30x_rng.h"
#include "meshcore/meshframing.h"
#include "meshcore/packets/advert.h"
#include "meshcore/packets/control.h"
#include "meshcore/packets/encrypted.h"
#include "meshcore/packets/group.h"
#include "task.h"
#include "meshcore/packetstructs.h"
#include "sx1262.h"
#include "util/hexdump.h"
#include "util/log.h"
#include "string.h"
#include "meshcore/meshcore.h"
#include "lib/config.h"
#include "lib/rtc/rtc.h"
#include "lib/ed25519/ed_25519.h"
#include "meshcore/stats.h"
#include "lib/adc/temperature.h"
#define TAG "MeshCore"
static TIM_TypeDef *runtimeTIM = TIM2; // use TIM2 for example
void vConfigureTimerForRunTimeStats (void) {
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
// Reset the timer
TIM_DeInit (runtimeTIM);
// Set timer for max period, upcounting
TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; // Assuming 72 MHz clock -> 1 MHz timer tick (1 ?s)
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = 0xFFFF; // Max 16-bit value
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit (runtimeTIM, &TIM_TimeBaseStructure);
TIM_Cmd (runtimeTIM, ENABLE);
}
uint32_t ulGetRunTimeCounterValue (void) {
return TIM_GetCounter (runtimeTIM);
}
/* Global define */
#define TASK1_TASK_PRIO 5
#define TASK1_STK_SIZE 1024
/* Global Variable */
TaskHandle_t Task1Task_Handler;
TaskHandle_t Task2Task_Handler;
/*********************************************************************
* @fn task1_task
*
* @brief task1 program.
*
* @param *pvParameters - Parameters point of task1
*
* @return none
*/
// uint8_t bufIn[260];
void task2_task (void *pvParameters) {
char x;
MESH_LOGD (TAG, "Task2 boot");
while (1) {
if (USART_GetFlagStatus (USART1, USART_FLAG_RXNE) == SET) {
x = USART_ReceiveData (USART1);
if (x == 'M') {
MESH_LOGI (TAG, "Sending message\n");
char tempBuf[180];
snprintf (tempBuf, 180, "SySTick is %d", xTaskGetTickCount());
makeSendGroupMessage (tempBuf, 1);
}
if (x == '0') {
MESH_LOGI (TAG, "Sending zero hop advert\n");
sendAdvert (0);
}
if (x == 'F') {
MESH_LOGI (TAG, "Sending flood advert\n");
sendAdvert (1);
}
if (x == 'N') {
printNodeDB();
}
if (x == 'D') {
PlainTextMessagePayload plainTextMessage;
plainTextMessage.timestamp = RTC_GetCounter();
plainTextMessage.textType = 0;
plainTextMessage.attempt = 0;
snprintf (plainTextMessage.message, sizeof (plainTextMessage.message), "Sending message at SySTick is %d", xTaskGetTickCount());
printf ("Sending a direct message to the first node\n");
sendEncryptedTextMessage (&(persistent.contacts[0]), &plainTextMessage);
}
if (x == 'C') {
for (uint8_t i = 0; i < ChannelCount; i++) {
Channel *channel = &(persistent.channels[i]);
if (strlen (channel->name) == 0) {
continue;
}
if (channel->timestamp == 0) {
continue;
}
printf ("Channel index %d, named %s, timestamp is %d, hash is %d\n", i, channel->name, channel->timestamp, channel->hash);
hexdump ("Pubkey", channel->key, sizeof (channel->key));
}
}
}
vTaskDelay (pdMS_TO_TICKS (2000));
}
}
void task1_task (void *pvParameters) {
// loadConfig();
populateDefaults();
LoraApply();
const int64_t interval_ms = 10; // 10 ms
int64_t start_time, end_time, elapsed;
ADC_Function_Init();
RTC_Init();
startupTime = RTC_GetCounter();
memset (&stats, 0, sizeof (stats));
DiscoverRequestPayload discReq;
discReq.prefixOnly = 0;
discReq.since = 0;
discReq.tag = RTC_GetCounter();
discReq.typeFilter = 0xFF;
sendDiscoverRequest (&discReq);
sendAdvert (1);
while (1) {
start_time = xTaskGetTickCount();
int8_t rssi, snr, rawsnr;
FrameStruct frame;
if (ReadFrame (&frame, &rssi, &snr, &rawsnr)) {
hexdump ("Whole frame", frame.payload, frame.payloadLen);
stats.lastSNR = rawsnr;
// stats.lastSNR = snr; //TODO figure out which to use
stats.lastRSSI = rssi;
MESH_LOGI (TAG, "rssi=%d[dBm] snr=%d[dB] rawsnr=%d[quarter dB]", rssi, snr, rawsnr);
// frame = decodeFrame (bufIn, rxLen);
MESH_LOGD (TAG, "Free stack before processFrame: %u bytes", uxTaskGetStackHighWaterMark (NULL) * 4);
processFrame (&frame);
if (persistent.doRepeat) {
MESH_LOGD (TAG, "Free stack before retransmitFrame: %u bytes", uxTaskGetStackHighWaterMark (NULL) * 4);
retransmitFrame (&frame);
}
memset (&frame, 0, sizeof (FrameStruct)); // prepare for the next round
}
int lost = GetPacketLost();
if (lost != 0) {
MESH_LOGW (TAG, "%d packets lost", lost);
}
end_time = xTaskGetTickCount();
elapsed = end_time - start_time;
if (elapsed < (interval_ms / 2)) {
vTaskDelay (pdMS_TO_TICKS ((interval_ms - elapsed)));
}
}
}
void vApplicationStackOverflowHook (TaskHandle_t xTask, char *pcTaskName) {
UBaseType_t minFree = uxTaskGetStackHighWaterMark (xTask);
MESH_LOGE (TAG, "Stack overflow in task '%s' (%p)! Minimum free stack: %u words (%u bytes)",
pcTaskName, xTask, minFree, minFree * 4);
}
/*********************************************************************
* @fn main
*
* @brief ; program.
*
* @return none
*/
int main (void) {
NVIC_PriorityGroupConfig (NVIC_PriorityGroup_2);
SystemCoreClockUpdate();
Delay_Init();
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
RCC_APB2PeriphClockCmd (RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init (GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init (GPIOA, &GPIO_InitStructure);
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
USART_Init (USART1, &USART_InitStructure);
USART_Cmd (USART1, ENABLE);
MESH_LOGD (TAG, "SystemClk:%d\r\n", SystemCoreClock);
MESH_LOGD (TAG, "ChipID:%08x\r\n", DBGMCU_GetCHIPID());
MESH_LOGD (TAG, "FreeRTOS Kernel Version:%s\r\n", tskKERNEL_VERSION_NUMBER);
xTaskCreate ((TaskFunction_t)task1_task,
(const char *)"task1",
(uint16_t)TASK1_STK_SIZE,
(void *)NULL,
(UBaseType_t)TASK1_TASK_PRIO,
(TaskHandle_t *)&Task1Task_Handler);
xTaskCreate ((TaskFunction_t)task2_task,
(const char *)"task2",
(uint16_t)TASK1_STK_SIZE,
(void *)NULL,
(UBaseType_t)TASK1_TASK_PRIO,
(TaskHandle_t *)&Task2Task_Handler);
vTaskStartScheduler();
while (1) {
MESH_LOGE (TAG, "shouldn't run at here!!\n");
}
}